Action G3 Agreed list of indicators (for example, 6 in number) ruse a sicerifically rigorous assessment of the exact requirements of common variables and identify a momon set of specifications between CGOS and CDL and UNCC. Dursum that maximum benefit is taken on CGOS ECV in implementing the SDG process, including addressing multiple benefits across SDG goals, filling the climite specific goal (SDG-13) and provideg support to transparent global development and mrate finance prioritization (SDG-17); explore how ECV data can contribute to: (a) The Ramsar Convention, the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (b) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (c) The Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constitute to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (c) other MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (d) the MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (d) the MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (d) the MEM, or Constituted to: (d) The Ramsar Convention; the Sendel Famework for Distarte Risk Reduction; (d) the MEM, or Constituted to: (d) The Sendel Remove for Constituted to the Sendel Remove for Constituted t N eveloped countries, developing count id banks, WMO VCP, GEF and other unds for UNFCCC, the United Nations revelopment Programme (UNDP), ational aid agencies; project proposals oordinated by GCOS panels, GCM Boar nd potential donor countries essisting developing countries naintain or renovate climate observation systems and to improve climate observations networks ide financial support to GCM through its trust fund; cooperate between donors to provide targeted unds received by the trust und; Increasing number of rojects supporting countries JS\$ 1–10 millio observations inventory and publication of annual recorts. Workshop outputs describing regional plans and priority national needs. GCOS secretariat in coordination with th UNFCCC Secretariat and national coordinators and the involvement and coordination with existing capacity-building activities, for example WCRP programmes such as CLIVAR or CORDEX) Develop and implement a GCOS communication strategy US\$ 100 000-1 N Action G12: Υ Develop and demonstrate review pro-in 2017. Review each ECV's observing systems at least every four years. nest shoos of enterly state-towers win way pure way and a state of the N US\$ 100 000-1 million (US\$ 20 000 per data centre) (10% in non-Annex-I Action G16: GCOS to work with WMO to ensure that the WIGOS metadata standard meets GCOS requirements for etadata, where relevant; 2. Develop metadata standards for those observing systems where they do not noard mechanisms? Can we ually provide any feedback here, space-observable ECVs? imber of ECV-related datas cessible through standard echanisms Parties) US\$ 10–30 milli N iternational programmes unding agencies for data JS\$ 1–10 millio Action G18: N ccessible to users eports of results of ECV eviews produced by panels ach year COS. GEO. US National JS\$10 000-100 N serve number for satellite data ords in ECV Inventory Action G20: GCO's secretariat to engage with WMO CCI on development of regulatory and guidance on climate data management Continue comprehensive global reanalyses and implement planned new production streams using improved data assimilation systems and better collections of observations; provide information on the uncertainty of products and feedback on data usage by the assimilation system. N US\$ 10-30 milli N Action G23: Action G24: N Action G25: N Action G26: gencies holding significant olumes of unrecovered data; pecific projects focused on ata recovery Data Increases in archive-cent oldlings and data used in iroduct generation; register intries recording data-recover ctivities (see following action N Action G28: stence and degree of oulation of register(s). N Action G29: N Action G30: rds tutions that have vered data records but made them widely N ed plans and agreed | | Support increased level of multibeam seabed mapping both synchronously with ocean observation initiatives
and separately as dedicated basin-scale mapping initiatives | Better representation of ocean
volume, improved ability to model | Institutions that fund vessel- | | US\$ 30-100
million | | May update info from SARGIP 2017 | |------|--|---|--------------------------------|-----------------|------------------------|---|----------------------------------| | G32: | | | | batnymetry data | million | | | | | | ocean currents and mixing | programmes and/or have | | | v | | | | | | access to survey platforms | | | | | | | | | with existing multibeam | | | | | | | | | survey infrastructure | | | | | | 6.2 | Atmospheric Domain Acti | | | | | | | Adressed in | | | |-------------|---|---|---|--|--|---|---------------------------------------|-------------|---------------------------|---| | Action A1: | Title Near-real-time and historical | Action Improve the availability of near-real-time and historical GSN data especially over Africa and the tropical Pacific | Benefit
Improved access for users to near- | Time frame
National Meteorological | Who Continuous for monitoring GSN | Performance indicator AOPC review of data archive | Annual cost
US\$ 10–15 million | SARGIP 2017 | ECV | Comment | | | GCOS Surface Network availability | | real-time GSN data | Services, regional centres in
coordination/cooperation
with WMO CBS, and with
advice from AOPC | performance and receipt of data at
archive centre | statistics at the World Data
Center for Meteorology at
Asheville, NC, USA, annually and
national communications to | | N | | | | Action A2: | Land database | Set up a framework for an integrated land database which includes all the atmospheric and surface ECVs and across all reporting timescales | Centralized archive for all
parameters. Facilitates QC among
elements, identifying gaps in the | NCEI and contributing centres | Framework agreed by 2018 | INFECE
Report progress annually to
AOPC | US\$ 100
00-1million | | | | | | | | data, efficient gathering and
provision of rescued historical data,
integrated analysis and monitoring
of ECVs. Supports climate | | | | | N | | | | Action A3: | International exchange of SYNOP | Obtain further progress in the systematic international exchange of both hourly SYNOP reports and daily and | assessments, extremes, etc.
Standardized formats and
metadata
Enhanced holdings data archives | NMHSs, regional centres in | Continuous, with significant improvement | Data archive statistics at data | US\$ 100 000-1 | | | | | Action A3: | and CLIMAT reports | Outain number progress in the systematic international exchange of both hourly STRUP reports and daily and monthly CLIMAT reports from all stations | Ennanced nordings data archives | coordination/cooperation
with WMO CBS, and with
advice from AOPC | Continuous, with significant improvement
in receipt of RBSN synoptic and CLIMAT
data by 2019 | centres | million | N | | | | Action A4: | Surface observing stations:
transition from manual to
automatic | Follow guidelines and procedures for the transition from manual to automatic surface observing stations | More stable time series | Parties operating GSN stations
for implementation. WMO
CCI, in cooperation with WMO
CIMO, WMO CBS for review | Ongoing | Implementation noted in
national communications and
relevant information provided | US\$ 30–100 million | N | | | | Action A5: | Transition to BUFR | Encourage dual transmission of TAC and BUFR for at least 6 months and longer if inconsistencies are seen (to compare the two data streams for accuracy). | Transition to BUFR does not
introduce discontinuities in the
datasets. BUFR allows metadata to | Parties operating GSN stations
for implementation | Ongoing for
implementation; review by 2018 | Proven capability to store BUFR
messages giving same quality or
better as TAC data | US\$ 100 000-1
million | N | | | | Action A6: | Air temperature measurements | Enhance air temperature measurements networks in remote or sparsely populated areas and over the ocean | be stored with data.
Improved coverage for better
depiction of climate system | National Parties and
International coordination
structures such as the Global
Cryosohere Watch (GCW) | Ongoing | Coverage of air-temperature
measurements | US\$ 10-30 million | N | | | | Action A7: | Atmospheric pressure sensors on drifting buoys | Enhance to 100% the percentage of drifting buoys incorporating atmospheric pressure sensors, in particular by
benefiting from barometer-upgrade programmes | Measurements over oceans of
surface pressure will improve
coverage. | Parties deploying drifting
buoys and buoy-operating
organizations, coordinated | Ongoing | Percentage of buoys with sea-
level pressure (SLP) sensors in
tropics and sub-tropics | US\$ 10 000-100
000 | N | | | | Action A8: | Provide precipitation data to the
Global Precipitation Climatology
Centre | Submit all precipitation data from national networks to the Global Precipitation Climatology Centre at the
Deutscher Wetterdienst | Improved estimates of extremes and
trends, enhanced spatial and
temporal detail that address | through JCOMM, with advice
from OOPC and AOPC
National Meteorological and
Water-resource Services, with
coordination through the | Ongoing | Percentage of nations providing
all their holdings of precipitation
data to international data | US\$ 100 000-1
million | | | | | Action A9: | Submit water-vapour data | Submit water-vapour (hurmidity) data from national networks and marine platforms to the international data | mitigation and adaptation
requirements
Improved coverage of surface water | WMO CCI and the GFCS. NMHSs, through WMO CBS | Ongoing | centres. Data availability in analysis | US\$ 100 000-1 | | | | | Action A10: | Incorporating national sunshine | centres National sunshine records should be incorporated into international Data Centres. | vapour measurements Better description of surface | and international data
centres, with input from AOPC
NMHSs | Implement in next 2 years | centres and archive and
scientific reports on the use of
these data
Sunshine record archive | million USS 1–10 million | N | | | | | records into data centres | | radiation fields | | , | established in international data
centres in analysis centres by
2018 | | N | | | | Action A11: | Operation of the the GCOS
Baseline Network for Surface
Radiation | Ensure continued long-term operation of the BSNI and expand the network to obtain globally more
representative coverage and improve communications between station operators and the archive centre | Continuing baseline surface
radiation climate record at BSRN
sites | Parties' national services and
research programmes
operating BSRN sites in
cooperation with AOPC and
the WCRP GEWEX Radiation
Basel | Ongoing | The number of BSRN stations
regularly submitting valid data
to international data centres | US\$ 100
000–1million | Y | | ECV Inventory may contains
information on usage of BSRN for
validation of satellite records- | | Action A12: | Surface radiation data to the
World Radialton Data Centre | Submit surface radiation data with quality indicators from national networks to the WRDC, expand deployment
of surface radiation measurements over ocean | Expand central archive; data crucial
to constrain global radiation
budgets and for satellite product
validation; more data over ocean
would fill an existing gap. | NMHSs and others, in
collaboration with WRDC | Ongoing | Data availability in WRDC | US\$ 1-10 million | N | | | | Action A13: | Implement vision for future of
GCOS Upper-Air Network
operation | Show demonstrable steps towards implementing the vision articulated in the GCOS Networks Meeting in
2014[1] relating to the future of GUAN operation | Improved data quality, better
integrated with GRUAN and more
closely aligned with WIGOS
framework | Task team of AOPC with GCOS
Secretariat in collaboration
with relevant WMO
commissions and WIGOS | 2019 for adoption at Nineteenth World
Meteorological Congress | Annual reporting in progress at
AOPC of task team | US\$ 100 000-1
million | N | | | | Action A14 | Evaluation of benefits for the
GCOS Upper-Air Network | Quantify the benefits of aspects of GUAN operation including attaining 30 hPa or 10 hPa, twice-daily as opposed to daily ascents and the value of remote island GUAN sites | Better guidance to GUAN
management, improved scientific
rationale for decision-making | NWP and reanalysis centres | Completed by 2018 | Published analysis (in peer
reviewed literature plus longer
report) | US\$ 10 000-100
000 | N | | | | Action A15: | Implementation of Reference
Upper-Air Network | Continue implementation of GRUAN metrologically traceable observations, including operational requirements
and data management, archiving and analysis and give priority to implementation of sites in the tropics, South
America and Africa | Reference-quality measurements
for other networks, in particular
GUAN, process understanding and | Working Group on GRUAN,
NMHSs and research agencies,
in cooperation with AOPC, | Implementation largely completed by 2025 | Number of sites contributing
reference-quality data streams
for archival and analysis and | US\$ 10-30 million | | | ECV Inventory may contains
information on usage of BSRN for
validation of satellite records- | | | | | satellite cal/val. | WMO CBS and the Lead
Centre for GRUAN | | number of data streams with
metrological traceability and
uncertainty characterization;
better integration with WMO
activities and inclusion in the
WMGOS manual | | Y | | | | Action A16: | Implementation of satellite
calibration missions | Implement a sustained satellite climate calibration mission or missions | Improved quality of satellite
radiance data for climate
monitoring | Space agencies | Ongoing | Commitment to implement by
the next status report in 2020;
proof-of-concept proven on ISS | US\$ 100-300
million | Y | | May update info from SARGIP 2017 | | Action A17: | Retain original measured values
for radiosonde data | For radiosonde data and any other data that require substantive processing from the original measurement (e.g. digital counts) to the final estimate of the measurand (e.g. T and q profiles through the lower stratosphere); the original measured values should be retained to allow subsequent reprocessing. | Possibility to reprocess data as
required, improved data
provenance | HMEI (manufacturers),
NMHSs, archival centres. | Ongoing. | pathfinder Original measurement raw data and metadata available at recognized repositories | US\$ 100
000–1million | N | | | | Action A18: | Hyperspectral radiances reprocessing | Undertake a programme of consistent reprocessing of the satellite hyperspectral sounder radiances | Consistent time series of
hyperspectral radiances for
monitoring and reanalyses,
improved CDRs computed from the | Space agencies | Ongoing | Reprocessed FCDRs available for
hyperspectral sounders | US\$ 100
000–1million | Y | | Some information on the existence of FCDRs could be inferred from the ECV Inventory | | Action A19: | Reprocessing of atmospheric motion vectors | Continue reprocessing of AMVs derived from geostationary satellite imagery in a coordinated manner across agencies | FCDRs Consistent time series of AMVs for monitoring and reanalyses, improved CDRs computed from the FCDRs | Space agencies | Ongoing | Reprocessed FCDRs available for
upper-air winds | US\$ 100 000-1
million | Y | Upper-air winds | Some information on the existence of
FCDRs could be inferred from the ECV
Inventory | | Action A20: | Increase the coverage of aircraft observations | Further expand the coverage provided by AMDAR, especially over poorly observed regions such as Africa and South America | Improved coverage of upper-air
wind for monitoring and reanalysis | NMHSs, WIGOS, RAs I and III. | Ongoing | Data available in recognized
archives | US\$ 1-10 million | N | | | | Action A21: | Implementation of space-based
wind-profiling system | Assuming the success of ADM/Aeolus, implement an operational space-based wind profiling system with global
coverage | Improved depiction of upper-air
windfields: improved reanalyses, 3D
aerosol measurements as a
byproduct | Space agencies | Implement once ADM/Aeolus concept is
proven to provide benefit | Commitment to launch ADM follow-on mission | US\$ 100-300
million | Y | | May update info from SARGIP 2017 | | Action A22: | Develop a repository of water
vapour climate data records | Develop and populate a globally recognized repository of GNSS zenith total delay and total column water data
and metadata | Reanalyses, water vapour CDRs | AOPC to identify the
appropriate responsible body | By 2018 | Number of sites providing
historical data to the repository | US\$ 100 000-1
million | Y | | ECV Inventory and gapanayisis
provides information. Action is very
fuzzy, KPI indicates only ground based
is thought of which doesn't fit with | | Action A23: | Measure of water vapour in the
upper troposphere/lower
stratosphere | Promote the development of more economical and environmentally friendly instrumentation for measuring
accurate in situ water-vapour concentrations in the UT/LS | Improved UT/LS water vapour
characterization, water-vapour
CDRs | NMHSs, National
measurements
institutes,
HMEI and GRUAN | Ongoing | Number of sites providing higher
quality data to archives | US\$ 10-30 million | N | | Shilli VAE | | Action A24: | Implementation of archive for
radar reflectivities | To implement a global historical archive of radar reflectivities (or products of reflectivities are not available) and
associated metadata in a commonly agreed format | Better validation of reanalyses,
Improved hydrological cycle
understanding | NMHSs, data centres, WIGOS | Ongoing | Data available in recognized
archive, agreed data policy | US\$ 1-10 million | N | | | | Action A25: | Continuity of global satellite
precipitation products | Ensure continuity of global satellite precipitation products similar to GPM | Precipitation estimates over oceans
for global assessment of water-cycle
elements and their trends | Space agencies | Ongoing | Long-term homogeneous
satellite-based global
precipitation products | US\$ 30–100 million | Y | Precipitation | Gap Analysis | | Action A26: | Development of methodology for
consolidated precipitation | Develop methods of blending raingauge, radar and satellite precipitation | Better precipitation estimates | WMO technical commissions. | By 2020 | Availability of consolidated
precipitation estimates | US\$ 10 000-100
000 | Y | | Maybe gap analysis if we have blended products. | | Action A27: | estimates Dedicated satellite Earth Radiation Budget mission In situ profile and radiation | Ensure sustained incident total and spectral solar irradiances and ERB observations, with at least one dedicated
astellite instrument operating at any one time.
To understand the vertical profile of radiation requires development and deployment of technologies to | Seasonal forecasting, reanalyses,
model validation.
Understanding of 3D radiation field, | Space agencies NMHSs, National | Ongoing
Ongoing | Long-term data availability at
archives
Data availability in NMS | US\$ 30-100 million US\$ 1-10 million | Y | Earth Radiation
Budget | Feedback based on contents of the ECV
Inventory | | Action A29: | Lightning | To dissipation the Vertical profiles or radiation requires severophient and deployment or technologies to
measure in-situ profiles. To define the requirement for lightning measurements, including data exchange, for climate monitoring and to | model validation, better
understanding of radiosondes
Ability to monitor trends in severe | measurements institutes, HMEI GCOS AOPC and space | Requirements to be defined by 2017 | archives Update to Annex A for lightning | US\$ 10-30 million | N | Lightning | Feedback based on contents of the ECV | | | • | encourage space agencies and operators of ground-based systems to provide global coverage and reprocessing
of existing datasets | storms | agencies | | and commitments by space
agencies to include lightning
imagers on all geostationary
platforms. Reprocessed satellite
datasets of lightning produced | | Υ | | Inventory | | | Water vapour and ozone
measurement in upper
troposphere and lower and upper
stratosphere | Re-establish sustained limb-canning satellite measurement of profiles of watervapour, ozone and other
important species from UT/IS up to 50 km | Ensured continuity of global
coverage of vertical profiles of UT/LS
constituents | Space agencies | Ongoing, with urgency in initial planning to minimize data gap | Continuity of UT/LS and upper
stratospheric data records | US\$ 30–100 million | Y | Water Vapour;
Ozone | Feedback based on contents of the ECV
Inventory | | Action A31: | Validation of satellite remote-
sensing | Engage existing networks of ground-based, remote sensing stations (e.g., NDACC, TCCON, GRUAN) to ensure
adequate, sustained delivery of data from MAXDDAS, charge coupled device (CCD) spectrometers, lidar, and FTIR
instruments for validating satisfile remote-sensing of the abmosphere | Validation, correction and
improvement of satellite retrievals | Space agencies, working with
existing networks and
environmental protection | Ongoing, with urgency in initial planning to minimize data gap | Availability of comprehensive
validation reports and near-real-
time monitoring based on data | US\$ 1-10 million | Y | | Feedback from ECV Inventory if used for validation. | | Action A32 | Fundamental Climate Data
Records and Climate Data Records
for greenhouse gas and aerosols
ECVs | Extend and refine the satellite data records (FCDRs and CDRs) for GHG and aerosol ECVs | Improved record of GHG concentrations | azencies
Space agencies | Ongoing | from the networks
Availability of updated FCDRs
and CDRs for GHGs and aerosols | US\$ 1-10 million | Y | GHG, Aerosols | Direct feedback for TCDRs, indirect for FCDRs | | Action A33 | Maintain WMO GAW CO ₂ and CH _d
monitoring networks | Maintain and enhance the WMO GAW Global Atmospheric CO, and CH, monitoring networks as major
contributions to the COSS Comprehensive Networks for CO, and CH, Advance the measurement of isotopic
forms of CO, and CH, and of appropriate tracers to separate human from natural influences on the CO, and CH,
budgets | A well-maintained, ground-based
and in situ network provides the
basis for understanding trends and
distributions of GHGs. | National Environmental
Services, NMHSs, research
agencies, and space agencies
under the guidance of WMO
GAW and its Scientific | Ongoing | Data flow to archive and
analysis centres | US\$ 1-10 million | N | | | | Action A34 | Requirements for in situ column composition measurements | Define the requirements for providing vertical profiles of CD2, CH4 and other GHGs, using recently emerging technology, such as balloon capture technology. | Ability to provide widespread,
accurate, in situ vertical profiles
economically; an excellent tool for
validating satellite retrievals and | Advisory Group on
Greenhouse Gases
GCOS AOPC and space
agencies | Requirements to be defined by 2018 | Update to Annex A to include
vertical profiles and XCO ₂ (the
dry-air column-averaged mole
fraction of CO ₋) | US\$ <5 million | N | | | | Action A35: | Space-based measurements of CO ₂ and CH ₆ implementation | Assess the value of the data provided by current space-based measurements of CO ₂ and CH ₆ , and develop and implement proposals for follow-on missions accordingly | Improvine transport models Provision of global records of principal greenhouse gases; Informing decision-makers in urgent efforts to manage GHG emissions | Research institutions and
space agencies | Assessments are ongoing and jointly pursued by research institutions | Approval of subsequent missions to measure GHGs | US\$ 30–100 million | Y | GHG | ECV Inventory may contains
information on usage of data+A40:K40
for validation of satellite records- | | Action A36: | N ₂ O, halocarbon and SF ₆
networks/measurements | Maintain networks for N $_{\rm J}$ O, halocarbon and $9t_{\rm g}$ measurements | Informs the parties to the Montreal
Protocol, provides records of long-
lived, non-CO ₂ GHGs and offers
potential tracers for attribution of CO ₂
emissions | National research agencies,
national environmental
services, NMHSs, through
WMO GAW | Ongoing | Data flow to archive and analysis centres | US\$ 30–100 million | Y | | | | | Ozone network coverage | Urgently reators the coverage the extent possible and maintain the quality and continuity of the GCOS Global
Baseline (profile, total and surface (evel) Ozone Networks coordinated by WM/O GAW. | emis ions. Provides validation of satellite retrievals and information on global trends and distributions of ozone. | Parties' national research
agencies and NMHSs, through
WMO GAW and network
partners, in consultation with
AOPC | Ongoin. | Improved and sustained
network coverage and data
quality | US\$ 1-10 million | Y | | May from ECV Inventory if used for
validation of existing data records | | Action A38: | Submission and dissemination of
ozone data | improve timeliness and completeness of submission and dissemination of surface ozone, ozone column and
profile data to users, WDCGG and WOUDC | Improves timeliness of satellite
retrieval validation and availability
of information for determining
global trends and distributions of | Parties' national research
agencies and services that
submit data to WDCGG and
WDUDC, through WMO GAW | Ongoing | Network coverage, operating
statistics and timeliness of
delivery. | US\$ 100 000-1
million | N | | | | | | | ozone. | and network partners. | | l | | | | | | - 1 | Action A39: | | | Reducing uncertainties in DARF and | | Ongoing, baseline in situ components and | | US\$ 10-30 million | | Aerosols | Info on data records in Gap Analysis | |-----|-------------|---------------------------|--|--------------------------------------|------------------------------|--|--------------------------------|--------------------|---|------------|--------------------------------------| | | | | (DARF) at the top of the atmosphere and its uncertainties, and determine aerosol forcing at the surface and in | the anthropogenic contributions to | research agencies and space | satellite strategy is currently defined. | measurements, appropriate | | | | report. | | | | | the atmosphere through accurate monitoring of the 3D distribution of aerosols and aerosol properties. Ensure | DARF, and the uncertainty in | agencies, with guidance from | | plans for future | | | | | | | | | continuity of monitoring programs based on in situ ground-based measurement of aerosol properties. | climate sensitivity and future | AOPC and in
cooperation with | | | | | | | | | | | | predictions of surface temperature. | WMO GAW and AERONET | | | | v | | | | | | | | Better constraints on aerosol type | | | | | | | | | | | | | needed for atmospheric correction | | | | | | | | | | | | | and more accurate ocean property | | | | | | | | | | | | | retrieval than currently available. | | | | | | | | | - 4 | | | | | | | | | | | | | | Action A40: | Continuity of products of | Ensure continuity of products based on space-based, ground-based and in situ measurements of the precursors | Improved understanding of how air | Space agencies, in | Ongoing | Availability of the necessary | US\$ 100-300 | | Precursors | Info on data records in Gap Analysis | | | | precursors of ozone and | (NO ₂ , SO ₂ , HCHO, NH ₁ and CO) of ozone and secondary aerosol and derive consistent emission databases, seeking to | pollution influences climate forcing | collaboration with national | | measurements, appropriate | million | v | | report. | | | | secondary aerosols | improve spatial resolution to about 1 x 1 km ² for air quality | and how climate change influences | environmental agencies and | | plans for future missions, and | | | | | | | | | | | | | | | | | | ustain and increase efforts for quality control and reprocessing of current and histo N trengthen funding of the ocean observing system to move towards a more sustained long-term tructure and broaden support by engaging more agencies and nations in sustained ocean obser spacitly building. Action O tional research programmes supporte the GOOS expert panels, CEOS nstellations Teams, JCOMM OCG and N Develop and begin implementation of a full-depth ocean temperature observing system to su global assessment of the total ocean heat content and thermosteric sea-level rise Maintain and grow a global ocean salinity observing system for the assessment of ocea ontent change and its contribution to global businglesical cycle Maintain and develop a global sea-surface-height observing system from observational and satellite or annual assessment of sea level and sea-level rise Maintain and improve the global sea-state observing system from the observational networks to inform wave models/climatelogies for assessment of wave climate, its trend and variability and contribution to extremes of sea level; expand observations on surface-reference moorings and drifters tong time series for validations of satellite data and model fields; short- and long-term forecasting of sea-ice conditions; ocean-atmosphere-sea ice interaction and process studies Action O1 \$ 30=100 mil ublished and establish DACs by 2019 N implementation through national service and research operations are supported by GDA-ON, GODS (CODE) and Econodisters sessert obselves (COCCP) in consultation with ODPC; implementation with ODPC; implementation through national service of research programmers, SCOR word; group 147 "Towards comparability of global oceanic nutrient data." e: Building multidisciplinary time series N ased accuracy of n surements N Develop sustained N₂O observations Υ S space agencies, in consultation CG, including Satellite PFT rcomparison Project, parties' nation rcompagencies, working with SCOR Expand Continuous Plankton Recorder and supporting observations N | Action O28: | Global networks of observation
sites for mangroves, seagrasses,
macroalgae | Advance the establishment of global networks of long-term observation sizes for seagrass beds, mangrove
forests and microslapic communities (including layer forests) and encourage collection of physical.
Subgood-emical, biological and ecological measurements, following common and intercal librated protocols and
designs and implement capacity-building workshops | Accurate global monitoring of
changes in mangroves, seaglasses
and macroalgae cover | 2016-2020. | Parties' national research and operational
agencies, supported by GOOS Biology and
Ecosystems Panel, GRAs and other
partners in consultation with CBD and
Ramsar Convention on Wetlands | Reporting on implementation status of network. | US\$ 30–100 million | N | | | |-------------------------|--|---|---|---|--|---|---|---|-------------------------|--| | Action O29: | In situ data for satellite
calibration and validation | Maintain in situ observations of surface ECV measurements from existing observations networks (including
surface drifting buoys, 500P ships, tropical moorings, reference moorings, Argo drifting floats, and research
ships) for califeration and validation of statellite data; undertake a review of requirements of observations | Comprehensive in situ observations
for calibration and validation of | Continuous, review by 2020 | Parties' national services and ocean research programmes, through GOOS, | Data availability at international
data centres | US\$ 1-10 million | Y | Ocean ECVs | Can we provide any feedback here on
the ground-based networks used for | | ActionA34:
K34 O30:: | Satellite sea-surface temperature | ships) for calibration and validation of satellite data; undertake a review of requirements of observations Secure future passive microwave missions capable of SST measurements | satellite data Ensure SST coverage in regions of high cloud coverage | Continuous | IODE and JCOMM, in collaboration with
WRCP/CLIVAR and CEOSS
Space agencies, coordinated through
CEOS, CGMS, and WMO Space Programme
in consultation with the Global High
Resolution Sea Surface Temperature | Agreement of plans for
maintaining required microwave
SST missions | US\$ 100-300
million (for
securing needed
missions) | N | SST | calibration? Gap analysis | | Action O31: | Satellite sea-surface height | Ensure continuous coverage from one higher-precision, medium-inclination altimeter and two medium-
precision, higher-inclination altimeters, including a satellite altimetry reference mission with no gap between
each satellite to ensure that each mission following another has a recovery period (6-9 months) to intercalibrate | Global routine calibrated mapping
of SSH; intercalibration period
between difference satellite | Continuous | Project (GHRSST) Space agencies, with coordination through the OSTST, CEOS Constellation for Ocean Surface Topography, CGMS and the WMO | Satellites operating; provision of data to analysis centres | US\$ 30–100 million | Y | Sea Level | ??? Information from OSCAR? (A bit far-
fetched, as this is specifically for the
reference missions (TOPEX, Jason- | | Action O32: | Satellite sea-surface salinity | onean other (example of TOPEX/Poseidon and Jason missions) Ensure the continuity of space-based SSS measurements | missions
Continue satellite SSS record to | Continuous | Space Programme. Space agencies, coordinated through | Agreement of plans for | US\$ 30-100 million | | SSS | 1/2/3/CS)
Feedback from ECV Inventory contents | | | | | facilitate research (ocean
circulation, dimate variability,
water cycle, and marine
biogeochemistry), operation
(ceasonal climate forecast, short-
term ocean forecast, ecological
forecast) and linkages with the
water cycle. | | OSSST, CEOS, CGMS and WMO Space
Programme and in situ network | maintaining a CEOS virtual
constellation for SSS, ongoing
satellite operation, routine
delivery of SSS products | (for securing needed missions) | Υ | | | | Action O33: | Satellite sea state | Continue to improve the delivery and quality of sea-state fields, based on satellite missions with in situ networks | Global routine calibrated mapping
of sea state | Continuous | Space agencies, coordinated through
CEOS, CGMS, and WMO Space Programme
and in situ network | Agreement of plans for
maintaining a CEOS virtual
constellation for sea state | US\$ 1-10 million
(for generation of
datasets) | Y | Sea State | Feedback from ECV Inventory contents | | Action O34: | Satellite ocean surface stress | Continue to improve the delivery and quality of ocean-surface stress fields based on satellite missions with the
comprehensive in situ networks (e.g. metocean moorings); improve
resolution with the benefit of near coastal
data; improved coverage of the dimain all oserior disurial cycles. | Global routine calibrated mapping
of ocean-surface stress | Continuous | Space agencies, coordinated through
OVSST, CEOS, CGMS and WMO Space
Programme and in situ network | Agreement of plans for
maintaining a CEOS virtual
constellation for ocean-surface | <empty></empty> | Y | Ocean Surface
Stress | Feedback from ECV Inventory contents | | Action O35: | Satellite sea ice | Ensure sustained satellite-based (microwave radiometry, SAR, altimetry, visible and IR) sea-ice products; high-
inclination altimetry (e.g. Cryosat follow-on) also desired | Global, routine, calibrated mapping of sea ice | Continuous | Parties' national services, research programmes and space agencies, | stress
Sea-ice data in international
data centres | US\$ 1-10 million
(for generation of | | Sea Ice | Feedback from ECV Inventory contents | | | | поливают в питему (в. g. с. у розы топом сто) это очество | or sea ree | | programmes are specially coordinated through the WMO Space
Programme and Global Cryosphere Watch,
CGMS and CEOS; national services for in
situ systems, coordinated through WCRP
CliC and JCOMM | ada cincres | datasets) | Y | | | | Action O36: | Satellite ocean colour | Support generation of long-term multi-sensor climate-quality OCR time series that are corrected for inter-sensor
bias as needed and that have quantitative uncertainty characterization, with global coverage and validity,
including coastal (Zea-2) water, and capable of dealing with user requirements for products at a variety of | Global routine calibrated mapping
of ocean colour, including coastal
(Case-2) regions | Implement plan beyond 2017 | CEOS space agencies, in consultation with
IOCCG and GEO; agencies responsible for
operational Earth observations, such as | Free and open access to up-to-
date, multi-sensor global
products for climate research; | US\$ 1–10 million
(for generation of
datasets) | Y | Ocean Colour | Feedback from ECV Inventory contents | | Action O37: | Argo array | space and timescales. Sustain and expand the Argo profiling float network of at least one float every 3" x 3" in the ocean, including | Global climate-quality observations | Continuous | NOAA in the USA and Copernicus in the
European Union
Parties participating in the Argo | flow of data into agreed archives
Spatial coverage and number of | US\$ 30 million | | | | | | | regional seas and the seasonal ice zone (approximately 3 800 floats) | of the broadscale subsurface global
ocean temperature and salinity
down to 2 000 m | | programme and in cooperation with the
JCOMM Observations Coordination Group | active floats | | N | | | | Action O38: | Development of a biogeochemical
Argo array | Deploy a global array of 1 000 profiling floats ("6"x "6") equipped with pH, oxygen, nitrate, chlorophyll
fluorescence, backscatter and downwelling irradiance sensors, consistent with the Biogeochemical Argo Science
and Implementation Plan | Giobal observations of the
broadscale subsurface global ocean
biogeochemistry down to 2 000 m | In place by 2026; review
progress in 2021 | Parties, in cooperation with the Argo
Project and the JCOMM Observations
Coordination Group | Number of floats reporting
oxygen and biogeochemical
variables | US\$ 25 million | N | | <u> </u> | | Action O39: | Development of a deep Argo
array | Deploy a global array of approximately 1 230 deep Argo floats at 5° x 5° spacing, covering all ocean regions deeper than 2 000 m | Global climate-quality observations
of the broad-scale subsurface global
ocean temperature and salinity | Array in place and maintained
by 2026; review progress in
2021 | Parties participating in the Argo
programme and in cooperation with the
JCOMM Observations Coordination Group | Spatial coverage and number of
active deep floats | US\$ 20 million | N | | | | Action O40: | GO-SHIP | Maintain a high-quality, full-depth, multi-disciplinary ship-based decadal survey of the global ocean
(approximately 60 sections) and provide a platform to deploy autonomous components of the ocean-observing | below 2 000 m Global, comprehensive, full-depth, decadal ocean inventory of ECVs | Continuous | National research programmes supported
by the GO-SHIP project, JCOMM Ocean | Percentage coverage of the
sections and completion of Level | US\$ 10-30 million | | | | | Action O41: | Develop fixed-point time series | system and test new technology Build and maintain a globally distributed network of multi-disciplinary, fixed-point surface and subsurface time | Comprehensive high temporal | Continuous | Coordination Group and GOOS Parties' national services and ocean | 1 measurements Moorings operational and | US\$ 30–100 million | N | | | | Action O42: | Maintain the Tropical Moored | series, using mooring, ship and other fixed instruments Maintain the Tropical Moored Buoy system | resolution time series characterizing
trends and variability in key ocean
regimes
Contributes to observing state of | Continuous | research agencies responding to the
OceanSITES plan working with GOOS
panels and GRAs
Parties' national agencies, coordinated | reporting to archives Data acquisition at international | US\$ 30–100 million | N | | | | | Buoy system | | the tropical ocean climate,
particularly focused on coupled
air-sea processes and high
frequency variability and for | | through the JCOMM Tropical Moored
Buoy Implementation Panel, following
guidance from scientific development
projects (e.g. TPOS 2020, IIOE-II, AtlantOS) | data centres and robust design
requirements articulated | | N | | | | | Develop time-series-based biogeochemical data | Establish a coordinated network of dhip-based multidiciplinary time series that is geographically
representative; initiate a global data product of time-series-based biogeochemical data | orediction of ENSO events Provision of comprehensive regular observations of ocean biogeochemistry, complementary to the GO-SHIP decadal survey | Internationally agreed plans
published by end 2018;
implementation build-up to
2020 | Parties' national research agencies,
working with IOCCP and user groups, such
as IGMETS | Publication of internationally
agreed plans; timely availability
of data in internationally agreed
on data centres | US\$ 10–30 million | N | | | | Action O44: | Meteorological moorings | Maintain measurements on surface moored buoys of meteorological parameters (air temperature, humidity,
SST, wind speed and direction) and expand range of parameters measured (surface pressure, waves,
precipitation and radiation); ensure observational metadata are available for all moored buoy observations,
both for current data and for the historical archive | Comprehensive marine
meteorological observation delivery | Continuous | Parties' national services and ocean
research agencies, DBCP, OceanSITES | Moorings operational and
reporting to archives | US\$ 30-100 million | N | | | | Action O45: | Wave measurements on moorings | outs for current pada ains for one instancial actives Develop as thought and implement a wave measurement component as part of the Surface Reference Mooring Network (DBCP and OceanSITES) | Comprehensive in situ reference observations of wave parameters. | Complete plan and begin
implementation by 2020 | Parties operating moorings, DBCP,
OceanSITES, coordinated through the
JCOMM Expert Team on Waves and | Sea-state measurement at the
international data centres | US\$ 1-10 million | N | | | | Action O46: | Observations of sea ice from
buoys and visual survey | Establish and sustain systematic in situ observations from sea-ice buoys, visual surveys (500P and Aircraft) and
ULS in the Arctic and Antacrcic | Enables tracking of variability in ice
thickness and extent | Continuous | Coastal Hazards Arctic Party research agencies, supported by the Arctic Council; Party research agencies, supported by CLIVAR Southern Ocean Panel; JCOMM, working with CliC and OOPC | Establishment of
agreements/frameworks for
coordination of sustained Arctic
and Southern Ocean
observations, implementation | Plan and
agreement of
frameworks: US\$
100 000-1 million.
implementation: | N | | | | Action 047: | Sustain drifter array | Sustain global coverage of the drifting buoy array (at least 1300 drifting buoys to cover oceans in the latitudes
between 605 and 60%, excluding marginal sex, plus additional coverage for these aread with ocean
temperature sensors and atmospheric pressure sensors on all drifting buoys. | Routine broad-scale observations of
surface temperature and sea-level
pressure in support of NWP; climate-
data products (e.g. SST) and
VOSCim for climate-quality flux
estimates: | Continuous | Parties' national services and research
programmes through JCOMM, DBCP and
the Ship Observations Team (SOT) | armorfine to plan Data submitted to analysis centres and archives | US\$ 1-10 million | N | | | | Action O48: | Underway observations from
research and servicing vessels | Ensure where possible that ancillary underway observations are collected during research voyages and routine
mooring servicing cruises | Improved coverage of underway
observations, particularly in data-
sparse, open oceans, and
complementary to moored buoy | Continuous. | National research agencies in consultation
with the JCOMM Ship Observations Team
and GO-SHIP | Improved observations from
research vessels | US\$ 1-10 million | N | | | | | Improve measurements from
Voluntary Observing Ships | improve the quality and spatial coverage of VOS observations, by working collaboratively with stakeholders
having interests in the maritime
transportation industry, continue efforts to validate utility of VOS observations
for a range of application, including NMP varined climate, revanish; and validation of memoriely sensed
observations. Improve metadata acquisition and management for as many VOS as possible through VOSCIIIn,
tomother with immorth measurement order measurement orders. | arrays Improved coverage of routine marine meteorology observations in support of NWP | Continuous | National meteorological agencies and
dimate services, with commercial shipping
companies in consultation with the
JCOMM Ship Observations Team | Increased quantity and quality of VOS reports | | N | | | | Action O50: | Improve measurements of
underway thermosalinograph
data | improve the quality and spatial coverage of underway temperature and salinity data; ensure observations are
archived and quality-controlled when collected complementary to other observing programmes | Improved coverage of surface
temperature and salinity
observations | Continuous | National meteorological agencies and
climate services, research agencies with
the commercial shipping companies in
consultation with the JCOMM Ship | Increased quantity and quality
of VOS reports | US\$ 1-10 million | N | | | | Action O51: | Sustain ship-of-opportunity
expendable
bathyghermograph/expendable
conductivity temperature depth | Sustain the existing, multi-decadal, dajo-of-opportunity XBT/XCTO transoceanic network in areas of significant scientific value | Eddy-resolving transects of major
ocean basins, enabling basin-scale
heat fluxes to be estimated and
forming a global underpinning
boundary-current observing system | Continuous | Observations Team
Parties' national agencies, coordinated
through JCOMM-SOT | Data submitted to archive;
percentage coverage of the
sections | US\$ 1–10 million | N | | | | Action O52: | Coordination of underway pCO ₂
observations and agreed best
practices | improve coordination, outreach and tracking of implementation and measurements of a global surface water
CO ₂ observing system; implement an internationally agreed strategy for measuring surface pcO ₂ on ships and
autonomous platforms and improve coordination of network; timely data submission to the SOCAT data portal | Delivery of a high-quality global
dataset of surface-ocean pCO ₂ ,
enabling accurate estimates of ocean | Establishment of global
monitoring group by 2018;
continuous, coordinated | IOCCP in coordination with OOPC, JCOMM
OCG and JCOMMOPS; implementation
through Parties' national services and | Tracking assets within 3 months
of completion of voyage; data
delivery to SOCAT. | US\$ 10-30 million | N | | | | Action O53: | Underway biogeochemistry observations | Sustain current trans-basin sampling lines of pCO ₂ and extend the coverage to priority areas by staring new lines (see
GCOS-186, page 137); implement routine pCO ₂ measurements on research vessels; develop and deploy a global ship-
based reference network of robust autonomous in situ instrumentation for Ocean biogeochemical ECVs | fluxes of carbon dioxide
Enables routine observations of
multiple surface Ocean
biogeochemical ECVs, leading to
improved coverage | network by 2020 Plan and implement a global network of SOOP vessels equipped with instrumentation by 2020 | research agencies Parties' national ocean research agencies in association with the GOOS Biogeochemistry Panel, IOCCP, in consultation with JCOMM OCG. | Improved flow of data to SOCAT;
pilot project implemented;
progress towards global
coverage with consistent
measurements as determined by | US\$ 10–30 million | N | | | | Action O54: | Continuous plankton recorder | Implement, global CPR surveys | Towards global transects of surface | 2026, review progress by 2021 | Parties' national research agencies, | number of ships with calibrated
sensors providing quality data | US\$ 10-30 million | | | | | | surveys | | zooplankton, plankton species
diversity and variability, plus an
indicator of phytoplankton
productivity | | through GACS and the GOOS Biology and
Ecosystems Panel | global CPR according to plan | | N | | | | Action OSS: | Maintain tide gauges | implement and maintain a set of gauges based on the GLOSS Core Network (approximately 300 tide gauges)
with geocentrically located, high-accuracy gauges; ensure continuous acquisition, real-time exchange and
archiving of high-frequency data; build a consistent time series, including historical sea-level records, with all | The GLOSS Core Network is the
backbone serving the multiple
missions that GLOSS is called on to | Continuous. | Parties' national agencies, coordinated
through JCOMM-GLOSS of | Data availability at international
data centres, global coverage,
number of capacity-building | US\$ 1-10 million | | | | | | | regional and local tide gauge measurements referenced to the same global geodetic reference system | serve. Not all core stations serve
were Not all core stations serve
were Not all stations
for a given mission are part of the
core. The Core Network circures to set
standards and is intended to serve
as the example for the development
of regional networks. The GLOSS
climate set serves to put the short
adminetly record into a proper
context, serves as the ground fruth
for the developing settlife dasaret,
and also provides continuity if
climate capable affirmety missions
have interruptions in the future. | | | resident supports containing persists. | | N | | | | Action O56: | Developing a global glider
observing system | Design and begin implementation of a globally distributed network of multi-disciplinary glider missions across
the continental shelf seas to the open ocean as part of a glider reference coastal-open ocean observation
network | Multi-disciplinary, high-frequency
observations enabling the linkage of
open ocean and coastal
environments and cross-shelf | Framework and plan
developed by 2020 | National research programmes
coordinated by the global glider
programme and GOOS | Published, internationally
agreed plan and
implementation of sustained
coastal boundary-open ocean | US\$ 10-30 million | N | | | | Action O57: | Developing a global animal-
tagging observing system | Move towards global coordinations of principed tagging for ecosystem and climate applications, including the coordination of deployment locations/species and QA/QC of resultant data | exchance of properties.
High-frequency T/S profile data in
polar regions and in the ice zone,
filling a critical gap in the observing
system, high-frequency T/S profile
data in other regions providing
complementary data to other
observing systems and likely high-
frequency sampling of physical
features of interest to foraging | Framework and plan
developed by 2020 | National research programmes coordinated through SOOS, SAEON GOOS | coastal boundary-open ocean
sections.
An internationally recognized
coordination activity, and
observing plan. | US\$ 10-30 million | N | | | | - | | | animals such as fronts and eddies | <u> </u> | | | l | | l . | | . All involved in terrestrial observations. nitially TOPC, GEO, ICSU, GOFC-GOLD, fluxNet, NEON 7: Hold workshops to uss way forward; 2019: :hanism in place. contribute in Accordance and Could income incom nvolved in coastal ally TOPC, OOPC Action T Υ isotify capacity development needs to inform GCM and other capacity building initiatives, identify specific monouments that could be associated by GCM in level with MPA (book looks) or \$\infty\$ getting the country of the cachange hydrological data and delivery or data centers or all interesting exceptions of \$\infty\$ getting and \$\infty\$ (iii.) improve the eachange hydrological data and delivery or data centers or all interesting exceptions of \$\infty\$ (iii.) improve the eachange hydrological point and and and admit of the development of improve hydrological point out to demonstrate the busic of these concentration and catalized data interesting exceptions. The concentration is a concentration of the concent ntries roved reporting filling large graphic gaps in datasets ntinuing; 2018 TN-H partners in nd GCOS N s/CNES, HYDROLARE Action T8 17-2020 JS\$ 10 000-100 N onnrm locations of GTN-R sites; determine operational status of gauges at all GTN-R sites; ensure that GRDC scelves daily river discharge data from all priority reference sites within one year of observation (including neasurement and data transmission technology used) ational Hydrological Services, through MO CHy in cooperation with TOPC, COS and GRDF Reports (made in cooperation with GTN-H partners) to TOPC, GCDS and WMO CHy on the completeness of the GTN-R record held in GRDC, including the number of stations and firm Global Terrestrial work for River Discharge site ssess national needs for river gauges in suppor dequacy of those networks N options for imprenuments explored Reports to UNESCO IHP and WMO CHy on the completeness of the GTN-GW record held in GGMS, including the number of records in, and nations perational groundwater nonitoring from gravity elop an operational groundwater product, based on satellite observations Global, consistent and verified datasets available to users Υ tegularly update individual microwave sensor (SMOS, SMAP, ASCAT, AMSR-E...) soil-moisture data records, including the subsidiary variables (freeze/thaw, surface inundation, vegetation optical depth, root-zone soil Coordinated in situ soil data for users and calibration for the connna Technical University, supported onal data providers, ESA, GEWEX, G and GEO illability of harmonized an ility-controlled in situ soil-isture data provided by work operators to ISMN v N dountain Asia (Himislaya, Karakorum, Pamiri (e.g., using
capacity-building and twinning programmes) morove the funding situation for international pacier data centres and services as well as for long-term glaci nonitoring programmes. Integrated and international availability of funding for sustaining programme, specting also private sector contributions Number of observation series submitted to WGMS Resources dedicated to glacier database management at WGMS and NSIDC; number of reference glaciers with more than 30 years of continued ass balance network prove the funding situation fo ternational glacier data centre N incourage and enforce research projects to make their ECV-relevant observations available through the ledicated international data centres (e.g. through dedicated budget lines and the use of digital object dentifiers for datasets). Open and long-term availability of data for users inalize the completion of a global reference inventory for gladiers and increase its data quality (e.g. outline, ime stamp) and data richness (e.g. attribute fields, hypsometry) ontinue to produce and compile repeat inventories at multi-decadal timescale bal glacier inventory Data coverage in GLIMS nmunity and space agencies Action T2 lti-decadal glacier invi abase a coverage in GLIMS latabase Data coverage in WGMS latabase Artion T mation nued accuracy of glacier cha IS\$ 30=100 m Artion T tend the glacier-front variation dataset both in space and back in time, using remote-sensing, in situ servations and reconstruction methods initation current glacier-observing sites and add additional sites and infrastructure in data-sparse regions, cluding South America, Africa, the Himalayas, the Karakoram and Pamir mountain ranges, and New Zealand titribute quality levels to long-term mass-balance measurements; improve satellite-based glacier inventories Action T Υ rove understanding of glacier amics and mass loss Υ Strengthen and maintain existing snow-cover and snowfall observing sites, provide clear and unambiguous instructions, ensure that sites exchange snow data internationally, establish global monitoring of those data on the GTS, and recover bisocial data, ensure peopring includes reports of zero cover. Detain integrated analyses of snow over both hemispheres IMHSs and research agencies, in coperation with WIMO-GCW and WCRP nd with advice from TOPC, AOPC and Υ sure continuity of in situ ice-sheet measurements and field expe ocesses and for the better assessment of mass-loss changes N \$ 30–100 n N GCW CEOS WG Cal/Val, TOPC observers, CFOS/CGMS WG Climate Υ N Υ Υ lish results. ommendations after gap lysis on further actions for Υ romote standardized data protocols for in situ LST and support the CEOS-LPV group in development of a onsistent approach to data validation, taking its LST Validation Protocol as a baseline ers, encouraging user uptake than one LST dataset. This ead to better characterisatio Υ Continue the production of global LST datasets, ensuring consistency between products produced from differences and by different groups Υ reprocess existing datasets of LST to generate a consistent long-term time series of global LST; in particular, eprocess archives of low Earth orbit and seostationary LST observations in a consistent manner and to | Action T45: | | | | | | | | | | | |---|--|--|--|--
---|--|---|---------------------------------------|-------------|--| | | network expansion | Expand the in situ national of permanent, high-quality it radiometers for dedicated ST validation | LST datasets better validated and
over more land-surface types;
independent validation of stated
accuracies providing credibility to
satellite LST products | Network concept and
approach by 2017;
implementation by 2018 | Partier national services and research agencies, space data providers, GOFC-GOLD, NASA LICLUC, TOPC, CEOS WGCV/LPV, ILSTE | Establishment of a
comprehensive network of
ground sites with high-quality in
situ measurements suitable for
validating the different sensors;
results from in situ radiometer
intercomparison exercises | US\$ 1-10 million
(10-20 sites at US\$
100 000 per site) | Y | | | | Action T46: | Land-surface temperature
radiometric calibration | Radiometric calibration intercompanions and uncertainties for LST smoors | LST datasets better calibrated and
over all land-surface types for
different at ellits sensors;
independent calibration providing
credibility and traceability of data
and uncertainties | Network concept and
approach by 2017;
implementation by 2018 | Coordinated by CEOS WGCV Infrared and
Visible Optical Sensors subgroup/GSICS and
supported by space agencies | ECV generators taking into
account radiometric calibration
uncertainties, ideally with
calibrations being referenced to
a common framework | US\$ 1–10 million | Y | LST | ??? Here a feedback would only be
possible after deep digging into
documentation | | Action T47: | Land-cover experts | Maintain and strengthen a global network of land-cover/land-use experts to: develop and update an
independent, very high pastall-resolution reference dataset for global land-cover map accuracy assessment, and
facilitate access to land-use and management information to support the development of global-scale land-use
products. | For GLC map developers, GLC map
users | Network concept and
approach by 2017;
implementation by 2018 | GOFC-GOLD, CEOS WGCV/LPV, Parties'
national services and research agencies,
space data providers, NASA LCLUC, TOPC | Global LC map developers using
the reference data developed by
the operational network | US\$ 100 000-1
million | Y | | | | Action T48: | Annual land-cover products | Generate annual land-cover products over key regions that allow change assessment across time (including for
the surFCC APCIU land categories) at 10 m-30 m spatial resolutions, according to internationally agreed
standards and accompanied by statistical descriptions of their accuracy | For mitigation and adaptation
communities | 2017 and beyond | Space agencies, GOFC-GOLD, Copernicus
Land Service, USGS, University of
Maryland (UMD)-GoogleEarth | Product delivered and used by a
large community; use of
standard approaches for
validation and uncertainty
metrics | US\$ 1-10 million | Υ | Land cover | Feedback from ECV Inventory contents? | | Action T49: | Land-cover change | Generate global-scale land-cover products with an annual frequency and long-term records that allow change
assessment across time (including as much as possible for the six IPCC AFOLU land categories), at resolutions
between 250 m and 1 km, according to internationally agreed standards and accompanied by statistical
describtions of their accounts. | To climate change modellers, others | 2017 and beyond | Space agencies, research institutes, GOFC-
GOLD, Copernicus Land Service | metrics
Product delivered and used; use
of standard approaches for
validation and uncertainty
metrics | US\$ 1-10 million | Y | Land cover | Feedback from ECV Inventory contents? | | Action TS0: | Land-cover community consensus | Develop a community consensus strategy and priorities for monitoring to include information on land
management in current land-cover datasets and start collecting relevant datasets and observations, building on
ongoing activities | To climate change modellers,
mitigation and adaptation user
communities | Concept and approach by
2017; start implementation by
2018 | Parties' national services and research
agencies, space agencies, GOFC-GOLD,
NASA LCLUC, TOPC, UMD-GoogleEarth,
CEOS, ESA, USGS, GOFC-GOLD, FAO, GEO | Product delivered and used | US\$ 100 000-1
million | Y | | | | Action T51: | Deforestation | Develop washy deforestation (from: cleaning) and depodation (partial cleaning) for key regions that allow change assessment across time at 10 m-30 m spatial resolutions, according to internationally agreed definitions. | To provide annual monitoring of
deforestation and forest
degradation to support
management and reporting | Concept and approach by
2017; implementation by 2018 | Parties' national services and research
agencies, space agencies, GOFC-GOLD,
NASA ECLUC, UMD-GoogleEarth, TOPC. | Indicators-based standard
validation approach for change
of forest cover and attributions
associated with deforestation
and degradation; product
delivered and used | US\$ 100 000-1
million | Y | | | | Action TS2: | Collaboration on above ground
biomass | Encourage inter-agency collaboration on developing optimal methods to combine biomass estimates from
current and upcoming missions (e.g., ESA BIOMASS, NASA GEDI and NASA-ISRO NISAR, JAXA PALSAR, CONAE
SAOCOM) | Reduced error, cross-validation,
combining strengths of different
sensors in different biomass ranges | Most key
missions are
expected to be in orbit
between 2016 and 2020 | ESA, NASA, JAXA, NASA-ISRO, CONAE | A strategy to combine biomass
estimates from different sensors,
together with algorithms and
processing methods | US\$ 100 000-1
million | Y | AGB | Feedback from ECV Inventory contents? | | Action T53: | Above-ground biomass validation
strategies | Securacy interagency collaboration to develop unlitation strategies for upcoming ensurers aimed at measuring Bownse, SEA EDMANSE, NASA CDI and NASA SEO INSSAI), to include combined use of in situ and arbonne (life ir bonnes measurements). | Potential to produce more
comprehensive validation of
biomase setimates by cost-sharing.
Greater consistency between
biomass estimates from different
sensors because of assessment
against common reference data | From now until the
operational phase of the
various sensors (2016–2022). | ESA, NASA, JAXA, NASA-ISRO, CONAE | Formal agreement between
agencies on a strategy for joint
gathering and sharing of
validation data, together with
funding of specific elements of
the overall set of validation data | US\$ 10 000-100
000 | Υ | | | | Action T54: | Above-ground biomass validation sites | Develop as end of validation rates covering the major front types, especially in the tropic, as which high-quality because estimations can be made, using standard protocols developed from grown measurements or airhome in | Essential to give confidence in
satellite-derived biomass estimates
at global scale | From now up to the
operational phase of the
various sensors (2018–2022) | Space agencies working with key in situ
networks (e.g., RainFor, Afritmo, the
Smithzonian Center for Tropical Forest
Science), GEO-GFOI | Establishment of a
comprehensive network of
ground sites with high-quality, in
situ biomass estimates with
uncertainty assessments
suitable for validating the
different sensors | US\$ 30–100 million
(50 tropical sites
covering all forest
types: US\$ 20
million); estimate
for temperate and
boreal sites not yet
formulated | Υ | | | | Action TSS: | Above-ground biomass data access | Promote access to well calificated and validated regional- and national-scale biomass maps that are increasingly
being produced from airborne lidar. | Greatly extends the
representativeness of data available
for validating satellite-derived
biomass data, since a much greater
range of land types and forest
conditions will be covered | From now until the
operational phase of the
various sensors (2016–2022) | GEO-GFOI, other national and
international bodies producing biomass
maps | Availability of multiple regional-
to country-scale maps of
biomass derived from airborne
lidar; use of standard protocols
for uncertainty assessment of
lidar estimation of biomass | US\$ 10 000–100
000 (does not
include monitoring
costs) | Υ | | | | Action TS6: | Above-ground biomass: forest
inventories | Improve access to high quality forest inventories, especially in the tropics, including those developed for research purposes and REDD+ | Extends the data available for
validating satellite-derived biomass
data | From now until the
operational phase of the
various sensors (2016–2022) | GEO-GFOI, other national and
international bodies producing or funding
forest inventories | Access to databases of
georeferenced biomass
measurements derived from
ground measurements for forest-
inventory numoses | US\$ 10 000-100
000 | Υ | | | | Action T57: | Soil carbon: carbon mapping | Cooperate with the soil-carbon mapping exercises to advocate accurate maps of soil carbon | Improved data accuracy | Ongoing | TOPC and GCOS | Improved maps | US\$1 000-10 000 | N | | | | Action TS8: | Soil-carbon change | Encourage flux sites to measure soil carbon at five-year intervals and record soil-management activities; use this | Improved in situ observations will | Ongoing | TOPC and GCOS | Number of flux sites making
measurements | US\$10 000-100 000 | N | | | | Action TS9: | Soil carbon – histosols | to supplement long-term experiments that are monitoring soil carbon. Provide global maps of the extent of histosols (peatlands, wetlands and permafrost) and their depth | Improve accuracy. Improve understanding of carbon | Ongoing | Research communities, ISRIC, HWSD and | Availability of maps | US\$ 10 000-100 | N | Land cover? | ??? Not sure! | | Action T60: | Historic fire data | Reanalyse the historical fire-disturbance satellite data (1982 to present) | pools at risk from climate change
Climate-modelling communities | By 2020 | the Global Soil Mao
Space agencies, working with research
groups coordinated by GOFC-GOLD-Fire By
2020 | Establishment of a consistent
dataset, including the globally
available AVHRR data record | US\$ 1-10 million | Y | Fire | Feedback from ECV Inventory contents | | Action T61: | Operational global burned area
and fire radiative power | Continue the production of operational, global burned area active fire (with associated FRP) products, with
metadata and uncertainty characterizations that meet threshold requirements and have necessary product back
up to ensure operational delivery of products to users. | Climate-modelling communities,
space agencies, civil protection
services, fire managers, other users | Continuous | Space agencies, Copernicus Global Land
Service, Copernicus Atmospheric
Monitoring Service, GOFC-GOLD | Availability of products that
meet user needs | US\$ 1-10 million | Y | Fire | Feedback from ECV Inventory contents | | Action T62: | Fire maps Fire validation | Consistently map global burned area at < 100m recolution on a near-daily basis from combinations of satellite
products (Sentimel). Landaut, Sentimel - J. Polical work towards deriving consistent measures of fire seventy,
free type, full microline and related plant-fuel parameters. Continuation of validation activity around the detection of fire-disturbed areas from satellites to show that | Climate-modelling communities ,
space agencies, civil protection
services, fire managers, other users | By 2020 | Space agencies, research organizations,
international organizations in
collaboration with GOFC-GOLD-Fire | Availability of data and products | US\$ 1-10 million | Y | Fire | Feedback from ECV Inventory contents? | | ALLION 165: | Fire validacion | | | Castleman | | Dubling of towns and | LICCA AD WILLIAM | | ri | Condition from POV Inventory | | | | threshold requirements are being met; work to reduce the errors of commission and omission; provide better | Climate-modelling communities. | Continuous | Space agencies and research
organizations, supported by CEOS LPV | Publication of temporal accuracy | US\$ 1–10 million | Y | Fire | Feedback from ECV Inventory contents? Far-fetched | | Action T64: | development | Threshold requirements are being mit; work to reduce the errors of commission and omission, provide better
than exterior automatic highest trainistics of fine disabilities another.
As the property of the property of the property of the property of a transport model,
private vegetation models and Grid evention models, the dimate modelling and transport modelling
community and those involved in the continual significant diversipency, which disabilities and uncertainty
characterization of the disabilities products from suitabilities table betain observation and modelling
community), contribute better understanding for first and the less recommission of
contributes the production of the contributes of the contribute of the contributes | Climate-modelling communities,
Copernicus Programme | Continuous | organizations, supported by CEOS LPV Space agencies (NASA, ESA, etc.), interagency bodies (GOFC-GOLD, CEOS, ECMWF, Meteosat, etc.), Copernicus Global Land Service, Copernicus Atmospheric Monitoring Service, GOFC- | accuracy Projects that engage climate and atmospheric transport modellers and product-development community | US\$ 1–10 million | Y | Fire | | | Action T65: | development Anthropogenic water use | threshold requirements are being mit work to reduce the errors of commission and censions, provide better than existers uncertain the humanitation and reductationes resolutes. Continuation of joint projects between research groups involved in the development of atmospheric transport of the control of joint projects between research groups involved in the development of atmospheric transport of the control of joint projects between research groups involved in the development of atmospheric production of projects between research groups in the development of t | Climate-modelling communities,
Copernicus Programme Accurate and up-to-date data on
water availability and stress | Continuous | organizations, supported by CEOS LPV Space agencies (NASA, ESA, etc.), inter- gency bodies (GDF-GGUD, CEOS- ECMWF, Meteosat, etc.), copernicus Global Land Service, Copernicus Almospheric Monitoring Service, GOPC- GISI II UN Water, IVMMI and FAD through AQUASTAT in colaboration with UN Statistics Division and other data sources | accuracy Projects that engage climate and atmospheric transport modellers and product-development | US\$ 1-10 million US\$ 100 000-1 million | | Fire | | | Action T65: Action T66: | development Anthropogenic water use Pilot projects: anthropogenic water use | threshold requirements are being mit work to reduce the errors of commission and onission, provide better than existed assertishment and establishment and contained and an extra of the contained and contain | Climate modelling communities, Copernicus Programme Accurate and up to date data on water availability and stress Demonstrate data-collection approaches for wide implementation | Continuous
2016–2019 | organizations, supported by
ECDS EV
Space agencies (MASA, ESA, etc.), inter-
agency bodes (DOFF-GOLD, CEDS,
support bodes) (DOFF-GOLD, CEDS,
supported by the support of the support of
GOAT (Support of
GOAT (Support of
GOAT (Support of
Supported by
ADJASTAT in Collaboration with UN
SUSSIGNES (WHIN and FAD through
ADJASTAT in Collaboration with the
Convention on the Protection and Use of
Transboundary Watercourses and Use of
Transboundary Watercourses and | accuracy Projects that engage climate and authorishment and product development community in the accommunity accommunit | US\$ 1-10 million US\$ 100 000-1 million US\$ 100 000-1 million | Y | fire | | | Action T65: Action T66: Action T67: | development Anthropogenic water use Pilot projects: anthropogenic water use improve global estimates of anthropogenic greethouse gas emissions | Invention designments are being met, work to reduce the errors of commission and onissions provide better in the section acceptance in Americans and an extension provides better in the section and acceptance of a timophism to secure of the section of the section and acceptance of the section of the section and acceptance of the section of the section and acceptance of the section static of the section | Climate modelling communities,
Copernicus Priogramme Accurate and up-to-date data on
water availability and stress Demonstrate data-collection
approaches for with
implementation Improved tracking of global
authropogenic emissions | Continuous 2016–2019 Ongoing, with annual updates | Separations, supported by COS/LVP Lover agenine (MacK AL, et.) Inter- spency backs (SCOS), COSO, Grand Lover, Copermon Global Land Service, AND Copermon Global Service, | accuracy Projects that engage climate and atmospheric transport modellers and produced transport modellers and produced transport modellers and produced transport modellers and produced transport | US\$ 1-10 million US\$ 100 000-1 million US\$ 100 000-1 million US\$ 100 000-100 000 | Y
N | Fire | contents Far furthed. | | Action T65: Action T67: Action T68: | development Anthropogenic water use Plior projects: anthropogenic water use Improve global estimates of anthropogenic grenhouse gas emissions and through the properties of the project water use and the project water use of the project water wa | Insended requirements are being mer, work to reduce the errors of commission and omission, provide better for an extract search inchanges and extract search and inchanges and extract search and inchanges and extract search of the contract search and extract search and extracted extra | Contain modelling communities, Caperinicus Programme Accurate and up to date data on accurate and up to date data on accurate and up to date data on accurate adultability and dates Domonistrate data-collection approaches for wide improved tracking of global anthropogenic envisions Improved tracking of global and material monotoning of ULICOT | Continuous 2016–2019 Ongoing, with annual updates Ongoing. | Cognition Supported by COS/LVP Data spenier (MASI AG, etc.) Inter- spenier bode (SIGF-COSID, COSI), COSIM/M, Messeas et al. Cognetion Global Land Service, Copernicus Global Land Service, Copernicus ANA Service, COSID- COS | Accuracy Project that engage climate and strong-him for any product development community and product development community community and product development community community and product development in the AGUARSTAT database. Compeleted data collection in pilot areas Availability of Improved estimates. Availability of stratellite data | USS 1-10 million USS 100 000-1 million USS 100 000-1 million USS 100 000-100 USS 100 000-1 million | Y
N | Land cover | | | Action T65: Action T66: Action T67: | development Anthropogenic water use Plot projects: anthropogenic water use Improve global estimates of authropogenic greenhouse gas emissions. Our of satetites for Land use, land use change and forestry strained and second and second use forestry and the satetites for Land use, land use change and forestry strained and second use forestry and the satetites for Land use, land use change and forestry strained and second use forestry and on the satetites for Land use, land use of land use of land use, | Introducing deginements are being merit work to reduce the errors of commission and consistion, provide better makes additional consistion. A make addition accessful and better statistical for information and consistent c | Citatian modelling communities, Copernicus Programme Accuste and up to date data on wester availability and stress Communitate data collection Communitate data collection Communitate data collection Improved probable and mational monologing of LULIUF Better understanding of the global control or collection Long or collection of Communitation Communita | Continuous 2016–2019 Ongoing, with annual updates | cognitions, supported by CGOS.VP As an approximate process of the common and | accuracy Projects that engage climate and atmospheric transport modellers and produced transport modellers and produced transport modellers and produced transport modellers and produced transport | USS 1-10 million USS 100 000-1 million USS 100 000-1 million USS 10 000-100 000 | N N | fare | content? Far detched. | | Action T65: Action T66: Action T67: Action T68: Action T68: | development Anthropogenic water use Plot projects: anthropogenic water use Improve global estimates of authropogenic greenhouse gas emission. Improve global estimates of authropogenic greenhouse gas emission gas description on the authropogenic gas description on the land disk authropogenic gas description of descript | Invention designments are being met, work to reduce the errors of commission and onissions provide better in the section acceptance in Americanism of the designment of the section | Cimate modelling communities, Copernicus Programme Accurate and up to date data on water availability and stees Demonstrate data-collection syspecta-to-for water availability and stees Demonstrate data-collection syspecta-to-for water syspectal systems and syspectal systems and are systems and systems and systems are systems and systems and systems are systems and systems are sys | Continuous 2016-2019 Ongoing, with annual updates Ongoing | Separations, supported by COS/LVP Ober agenice (MASK Apt. c) Inter- spency basic (SAR Inte | Accuracy Temporary Committee and according to the committee and according for product for expert modellines and product development community information contained in the AGAINATAT database. Compresed data collection in pilot areas and according to the collection in pilot areas. Availability of improved collection in according to the collection of th | US\$ 1-10 million US\$ 100 000-1 million US\$ 100 000-1 million US\$ 10 000-100 US\$ 100 000-1 million US\$ 100 000-1 million | Y N N N N N N | Land cover | content? Far destined. | | Action T65: Action T66: Action T67: Action T68: Action T68: | development Anthropogenic water use Anthropogenic water use Prior projects anthropogenic water use Improve global edimates of anthropogenic greenhouse ges emissions Use of authropogenic general gene | Invested in experiments are being mere, who is reduce the errors of commission and onission, provide better management and investments of the significance anadous, and increased in the significance and control of the significance anadous, and increased analysis of the significance anadous, and increased analysis of the significance anadous, and increased analysis of the significance and uncertainty of the significance analysis of the significance and uncertainty significant | Cimate modelling communities, Copernicus Programme Accurate and up-to-draft data on word and up-to-draft data on word and up-to-draft data on word and up-to-draft data collection approaches for wide implementation Improved tracking of global anathropognic emissions Improved tracking of global and anathropognic emissions Improved careful and tracking of global anathropognic emissions Improved careful and global and anathropognic emissions Improved careful and global and anathropognic emissions Improved careful and global anathropog | Continuous 2016-2019 2016-2019 Cregoing, with annual updates Origoing Cregoing | Construction, supported by CGO, IVP
Some agencies (MAX Let, Let) Inter-
gency bodies (GOF-CGO, D. CGO, S. CGO | Accuracy Temporary Committee and according to the committee and according for product for expert modellines and product development community information contained in the AGAINATAT database. Compresed data collection in pilot areas and according to the collection in pilot areas. Availability of improved collection in according to the collection of th | US\$ 1-10 million US\$ 100 000-1 million US\$ 100 000-1 US\$ 100 000-1 US\$ 100 000-1 US\$ 100 000-1 million US\$ 100 000-1 million US\$ 100 000-1 million | N N N N N N N N N N N N N N N N N N N | Land cover | content? Far funched. Faudhack from ECY Inventory content? Far funched. |