ANNEX A: ECV REQUIREMENTS

This Annex presents the requirements for the ECV products for all ECVs detailed in this Implementation plan.

For each ECV product, defined as the measurable parameter needed to characterize the ECV, a definition and units are provided together with the requirements.

The requirements are expressed in terms of five criteria:

- 1. Spatial Resolution horizontal and vertical (if needed)
- 2. Temporal resolution (or frequency) the frequency of observations e.g. hourly, daily or annual
- 3. Measurement Uncertainty the parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand (GUM)¹. It includes all contributions to the uncertainty, expressed in units of 2 standard deviations
- 4. Stability The change in bias over time. Stability is quoted per decade.
- 5. Timeliness The time expectation for accessibility and availability of data.

In this Implementation Plan, for each of these criteria, a goal, breakthrough and threshold value is presented. These are defined as:

- Goal (G): an ideal requirement above which further improvements are not necessary.
- Breakthrough (B): an intermediate level between threshold and goal which, if achieved, would result in a significant improvement for the targeted application. The breakthrough value may also indicate the level at which specified uses within climate monitoring become possible. It may be appropriate to have different breakthrough values for different uses.
- Threshold (T): the minimum requirement to be met to ensure that data are useful.

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

TABLE OF CONTENTS

A1. Atn	nospheric ECVs	9
1.	Surface	. 10
1.1	ECV: Air Pressure	. 10
1.1.1	ECV product: Atmospheric Pressure (near surface)	. 10
1.2	ECV: Surface Temperature	. 11
1.2.1	ECV Product: Atmospheric Temperature near Surface	. 11
1.3	ECV: Surface Wind Speed and Direction	. 13
1.3.1	ECV Product: Wind Direction (near surface)	. 13
1.3.2	ECV Product: Wind Speed near Surface	. 14
1.3.3	EC Product: Wind Vector (near Surface)	. 15
1.4	ECV: Surface Water Vapour	. 16
1.4.1	ECV Product: Dew Point Temperature near Surface	. 16
1.4.2	ECV Product: Relative Humidity near Surface	. 17
1.4.3	ECV Product: Air Specific Humidity near Surface	. 18
1.5	ECV: Precipitation	. 19
1.5.1	ECV Product: Accumulated Precipitation	. 19
1.6	ECV: Surface radiation budget	. 20
1.6.1	Upward Long-Wave Irradiance at Earth Surface	. 20
1.6.2	ECV Product: Downward Long-Wave Irradiance at Earth Surface	. 21
1.6.3	ECV Product: Downward Short-Wave Irradiance at Earth Surface	. 22
2.	Upper Air	23
2.1	ECV: Upper-air temperature	. 23
2.1.1	ECV Product: Atmospheric Temperature in the Boundary Layer	. 23
2.1.2	ECV Product: Atmospheric Temperature in the Free Troposphere	. 25
2.1.3	ECV Product: Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere	. 27
2.1.4	ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere	. 29
2.1.5	ECV Product: Atmospheric Temperature in the Mesosphere	. 31
2.2	ECV: Upper-air wind speed and direction	. 33
2.2.1	ECV Product: Wind (horizontal) in the Boundary Layer	. 33
2.2.2	ECV Product: Wind (horizontal) in the Free Troposphere	. 35
2.2.3	ECV Product: Wind (horizontal) in the Upper Troposphere and Lower Stratosphere.	. 37
2.2.4	ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere	. 39
2.2.5	ECV Product: Wind (horizontal) in the Mesosphere	. 41
2.2.6	ECV Product: Wind (vertical) in the Boundary Layer	. 43
2.2.7	ECV Product: Wind (vertical) in the Free Troposphere	. 45
2.2.8	ECV Product: Wind (vertical) in the Upper Troposphere and Lower Stratosphere	. 47
2.2.9	ECV Product: Wind (vertical) In the Middle and Upper Stratosphere	. 49
2.2.10	ECV Product: Wind (vertical) in the Mesosphere	. 50

2.2.11	Figures	. 51
2.3	ECV: Upper-air water vapour	. 56
2.3.1	ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere	. 56
2.3.2	ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere	. 57
2.3.3	ECV Product: Water Vapour Mixing Ratio in the Mesosphere	. 58
2.3.4	ECV Product: Relative Humidity in the Boundary Layer	. 59
2.3.5	ECV Product: Relative Humidity in the Free Troposphere	. 60
2.3.6	ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere	. 61
2.3.7	ECV Product: Specific Humidity in the Boundary Layer	. 62
2.3.8	ECV Product: Specific Humidity in the Free Troposphere	. 63
2.3.9	ECV Product: Integrated Water Vapour	. 64
2.3.10	ECV Product: Snow Thickness	. 65
2.3.11	ECV Product: Area Covered by Snow	. 66
2.4	ECV: Earth radiation budget	. 67
2.4.1	ECV Product: Radiation Profile	. 67
2.4.2	ECV Product: Solar Spectral Irradiance	. 68
2.4.3	ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere	. 69
2.4.4	ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere	. 70
2.4.5	ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere	. 71
2.5	ECV Cloud Properties	. 72
2.5.1	ECV Product: Cloud cover	. 72
2.5.2	ECV Product: Cloud Liquid Water Path	. 73
2.5.3	ECV Product: Cloud Ice Water Path	. 74
2.5.4	ECV Product: Cloud Drop Effective Radius	. 75
2.5.5	ECV Product: Cloud Optical Depth	. 76
2.5.6	ECV Product: Cloud Top Temperature	. 77
2.5.7	ECV Product: Cloud Top Height	. 78
2.6	ECV: Lightning	. 79
2.6.1	ECV Product: Schumann Resonances	. 79
2.6.2	ECV Product: Total lightning stroke density	. 80
3.	Atmospheric Composition	81
3.1	Greenhouse Gases	. 81
3.1.1	ECV Product: N ₂ O mole fraction	. 81
3.1.2	ECV Product: CO ₂ mole fraction	. 82
3.1.3	ECV Product: CO ₂ column average dry air mixing ratio	. 83
3.1.4	ECV Product: CH ₄ mole fraction	. 84
3.1.5	ECV Product: CH ₄ column average dry air mixing ratio	. 85
3.2	ECV: Ozone	. 86
3.2.1	ECV Product: Ozone mole fraction in the Troposphere	. 86
3.2.2	ECV Product: : Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere (UTLS)	

3.2.3	ECV Product: Ozone mole fraction in the Middle and Upper Stratosphere	89
3.2.4	ECV Product: Ozone Tropospheric Column	90
3.2.5	ECV Product: Ozone Stratospheric Column	91
3.2.6	ECV Product: Ozone Total Column	92
3.3	ECV: Precursors (Supporting the aerosol and ozone ECVs)	93
3.3.1	ECV Product: CO Tropospheric Column	93
3.3.2	ECV Product: CO Mole fraction	94
3.3.3	ECV Product: HCHO Tropospheric Column	95
3.3.4	ECV Product: SO ₂ Tropospheric Column	96
3.3.5	ECV product: SO ₂ stratospheric column	97
3.3.6	ECV Product: NO ₂ Tropospheric Column	98
3.3.7	ECV Product: NO ₂ mole fraction	99
3.4	ECV: Aerosols Properties	100
3.4.1	ECV Product: Aerosol light extinction vertical profile (Troposphere)	100
3.4.2	ECV Product: Aerosol light extinction vertical profile (stratosphere)	102
3.4.3	ECV Product: Multi-wavelength Aerosol Optical Depth	104
3.4.4	ECV product: Chemical Composition of Aerosol Particles	106
3.4.5	ECV Product: Number of Cloud Condensation Nuclei	107
3.4.6	ECV Product: Aerosol Number Size Distribution	108
3.4.7	ECV Product: Aerosol Single Scattering Albedo	110
A2. Oc	ean ECVs	111
4.	Physics	112
4.1	Sea-surface temperature	112
4.1.1	ECV Product: Sea-surface temperature	112
4.2	Subsurface temperature	113
4.2.1	ECV Product: Interior temperature	113
1.	Sea-surface salinity	115
4.2.2	ECV Product: Sea-surface salinity	115
4.3	Subsurface salinity	116
4.3.1	ECV Product: Interior salinity	116
4.4	Surface currents	117
4.4.1	ECV Product: Ekman currents	117
4.4.2	ECV Product: Surface geostrophic current	118
4.5	Subsurface currents	119
4.5.1	ECV Product: Vertical mixing	119
4.6	Sea level	120
4.6.1	ECV Product: Regional mean sea level	120
4.6.2	ECV Product: Global mean sea level	121
4.7	Sea state	122
4.7.1	ECV Product: Wave height	122
4.8	Surface stress	123

4.8.1	ECV Product: Surface stress	123
4.9	Ocean surface heat flux	124
4.9.1	ECV Product: Radiative heat flux	124
4.9.2	ECV Product: Sensible heat flux	125
4.9.3	ECV Product: Latent heat flux	126
4.10	Sea ice	127
4.10.1	ECV Product: Sea Ice concentration	127
4.10.2	ECV Product: Sea ice thickness	128
4.10.3	ECV Product: Sea ice drift	130
4.10.4	ECV Product: Sea ice age	131
4.10.5	ECV Product: Sea ice temperature	133
4.10.6	ECV Product: Sea ice surface albedo	133
4.10.7	ECV Product: Snow depth on sea ice	136
5.	Biogeochemistry	138
5.1	Oxygen	138
5.1.1	ECV Product: Dissolved oxygen concentration	138
5.2	Nutrients	139
5.2.1	ECV Product: Silicate	139
5.2.2	ECV Product: Phosphate	140
5.2.3	ECV Product: Nitrate	141
5.3	Ocean inorganic carbon	142
5.3.1	ECV Product: Total alkalinity (TA)	142
5.3.2	Dissolved inorganic carbon (DIC)	143
5.3.3	ECV Product: pCO ₂	144
5.4	Transient tracers	145
5.4.1	ECV Product: 14C	145
5.4.2	ECV Product: SF6	146
5.4.3	ECV Product: CFC-11	147
5.4.4	ECV Product: CFC-12	148
5.5	Ocean nitrous oxide N ₂ O	149
5.5.1	ECV Product: Nitrous oxide N ₂ O	149
5.5.2	ECV Product: N ₂ O air-sea flux	150
5.6	Ocean colour	151
5.6.1	ECV Product: Water leaving radiance	151
5.6.2	ECV Product: Water leaving radiance	152
6.	Biosphere	153
6.1	Plankton	153
6.1.1	ECV Product: Zooplankton diversity	153
6.1.2	ECV Product: Zooplankton biomass	154
6.1.3	ECV Product: Phytoplankton diversity	155
614	FCV Product: Chlorophyll-a concentration	156

6.1.5	ECV Product: Phytoplankton biomass	157
6.2	Marine habitat properties	158
6.2.1	Mangrove cover and composition	158
6.2.2	Seagrass cover (areal extent)	159
6.2.3	Macroalgal canopy cover and composition	160
6.2.4	Hard coral cover and composition	161
A3. Te	rrestrial ECVs	162
7.	Hydrology	163
7.1	Groundwater	163
7.1.1	ECV Product: Groundwater Storage Change	163
7.1.2	ECV Product: Groundwater Level	165
7.2	Lakes	167
7.2.1	ECV Product: Lake Ice Cover (LIC)	167
7.2.2	ECV Product: Lake ice thickness (LIT)	168
7.2.3	ECV Product: Lake Water Leaving Reflectance	169
7.2.4	ECV Product: Lake surface water temperature (LSWT)	170
7.2.5	ECV Product: Lake Water Extent (LWE)	171
7.2.6	ECV Product: Lake Water Level	172
7.3	River Discharge	173
7.3.1	ECV Product: Water level	173
7.3.2	ECV Product: River Discharge	174
7.4	Soil moisture	175
7.4.1	ECV Product: Freeze/thaw	175
7.4.2	ECV Product: Surface Inundation	176
7.4.3	ECV Product: Root zone soil moisture	177
7.4.4	ECV Product: Surface soil moisture	179
7.5	ECV: Terrestrial Water Storage (TWS)	181
7.5.1	ECV Product: TWS Anomaly	181
8.	Cryosphere	182
8.1	Glaciers	182
8.1.1	ECV Product: Glacier Ice Thickness	182
8.1.2	ECV Product: Glacier Mass Change	183
8.1.3	ECV Product: Glacier Elevation Change	184
8.1.4	ECV Product: Glacier Area	186
8.2	Ice sheets and ice shelves	187
8.2.1	ECV Product: Grounding Line Location and Thickness	187
8.2.2	ECV Product: Ice Volume Change	188
8.2.3	ECV Product: Ice Velocity	189
8.2.4	ECV Product: Surface Elevation Change	190
8.3	Permafrost	191
2 2 1	FCV Product: Permafrest extent	101

8.3.2	ECV Product: Permafrost Temperature (= PT)	192
8.3.3	ECV Product: Active Layer Thickness (= ALT)	194
8.3.4	ECV Product: Rock Glacier Velocity [=RGV]	196
8.4	Snow	198
8.4.1	ECV Product: Snow-water equivalent	198
8.4.2	ECV Product: Snow Depth	199
8.4.3	ECV Product: Area Covered by Snow	200
9.	Biosphere	201
9.1	Above-ground biomass	201
9.1.1	ECV Product: Above-ground biomass	201
9.2	Albedo	203
9.2.1	ECV Product: Spectral and Broadband (visible, near infrared and shortwave) I with associated spectral Bidirectional Reflectance Distribution Function (BRDF parameters (required to derived albedo from reflectances))
9.3	Evaporation from Land	
9.3.1	ECV Product: Transpiration	
9.3.2	ECV Product: Interception Loss	
9.3.3	ECV Product: Bare Soil Evaporation	
9.3.4	ECV Product: Sensible Heat Flux	
9.3.5	ECV Product: Latent Heat Flux	212
9.4	Fire	214
9.4.1	ECV Product: Burned area	
9.4.2	ECV Product: Active Fires	216
9.4.3	ECV Product: Combustion completeness (CC) / also termed Burning efficiency	(BE) 218
9.4.4	ECV Product: Fire Radiative Power (FRP)	220
9.5	Fraction of absorbed photosynthetically active radiation (FAPAR)	222
9.5.1	ECV Product: Fraction of Absorbed Photosynthetically Active Radiation	222
9.6	Land cover	
9.6.1	ECV Product: Maps of key IPCC land classes, related changes and land manage types	
9.6.2	ECV Product: Maps of High-Resolution Land Cover	226
9.6.3	ECV Product: Land Cover	228
9.7	Land Temperature	230
9.7.1	ECV Product: Land Surface Temperature (LST)	230
9.8	Soil Temperature	232
9.8.1	ECV Product: Soil Temperature	232
9.9	Leaf Area Index	234
9.9.1	ECV Product: Leaf Area Index	234
9.10	Soil carbon	236
9.10.1	ECV Product: Peatlands total depth of profile, area and location	236
9.10.2	ECV Product: Mineral soil bulk density to 30 cms and 1m	237
9.10.3	ECV Product: Carbon in Soil	238

10.	Anthropogenetic	.239
10.1	Anthropogenic Greenhouse Gas fluxes	.239
10.1.1	ECV Product: High-resolution footprint around point sources	.239
10.1.2	ECV Product: Total Estimated fluxes by coupled data assimilation/ models with observed atmospheric – national	.240
10.1.3	ECV Product: Total Estimated fluxes by coupled data assimilation/ models with observed atmospheric - continental	.241
10.1.4	ECV Product: Anthropogenic F-gas emissions from industrial processes and productuse	
10.1.5	ECV Product: Anthropogenic N ₂ O emissions from fossil fuel use, industry, agricultu waste and products use, indirect from n-related emissions/ depositions	
10.1.6	ECV Product: Anthropogenic CH ₄ emissions from fossil fuel, waste, agriculture, industrial processes and fuel use	.244
10.1.7	ECV Product: Anthropogenic CO ₂ emissions/ removals by land categories	.245
10.1.8	ECV Product: Anthropogenic CO ₂ emissions from fossil fuel use, industry, agricultu waste and products use	
10.2	Anthropogenic water use	.247
10.2.1	ECV Product: Anthropogenic water use	.247

A1. Atmospheric ECVs

1. SURFACE

1.1 ECV: Air Pressure

1.1.1 ECV product: Atmospheric Pressure (near surface)

Name	Atmospheric	Pressure	(near	r surface)					
Definition	Air pressure a	Air pressure at a known height above the surface with the height specified in the metadata.							
Unit	hPa								
Note	drifting buoys defined in terr achieve compa The primary a requirements Timeliness doe Important also observation of	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. The primary application of pressure in monitoring relates to the use of reanalysis and so these requirements have been set in this regard. Timeliness does not preclude delayed mode acquisition via e.g. data rescue. Important also, but not covered in the table, is the observation location information. A mis-placed observation of surface pressure (particularly the station elevation) will have substantial implications for reanalysis applications.							
				Requirem	nents				
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	10	Resolution is consistent with other surface ECVs				
Resolution			В	100					
			Т	500					
Vertical	N/A		G	N/A	N/A				
Resolution			В	N/A	N/A				
			Т	N/A	N/A				
Temporal	hr		G	1					
Resolution			В	6					
			Т	12					
Timeliness	h		G	6					
			В	24					
			Τ	monthly					
Required	hPa		G	0.5					
Measurement			В	1					
Uncertainty (2-sigma)			T	1					
Stability	hPa/decade		G	0.02					
			В	0.1	_				
			Τ	0.2					
Standards and References	Smith, S.R. ar	Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.							

1.2 ECV: Surface Temperature

1.2.1 ECV Product: Atmospheric Temperature near Surface

Name	Atmospheric Temperature near Surface							
Definition								
Unit	Air temperature at a known height above surface, with the height specified in the metadata K							
Note	The terminology used here for Tx and Tn and the observing cycle only applies to land-based meteorological stations. Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, , for example through the construction of gridded data products. Breakthrough targets are generally needed for reanalysis to make good use of these data. Temporal resolution: For better Reanalysis, we need more sampling down to 100km and sub-daily (hourly or 3-hourly). This is also needed for monitoring of extremes. For global temperature averages, the current network is good enough (although the 500km sampling doesn't get made in many regions, such as Africa). Even if we got to the goal sampling, the uncertainty in the monthly global average temperatures would be reduced, but not by much from what it is now. However, these more stringent requirements will allow regional monthly averages to be calculated. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.							
				Require	ments			
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal	km		G	10	Thorne et al. (2018)			
Resolution			В	100	Thorne et al. (2018)			
			Т	500	Threshold for horizontal resolution is based on the literature and specifically over land where correlation distances tend to be smaller than over the oceans. Thorne et al. (2018) showed via repeat sub-sampling of CRUTEM4 that well-spaced networks of the order 180 stations over the globe could recreate full-field global mean land surface air temperature estimates (see details in Jones et al., 1997) for the monthly timescale. For surface air temperature over the ocean which is taken predominantly by ships and buoys this can be challenging in remote Ocean basins (see the earlier note and Kent et al., 2019).			
Vertical	N/A		G	N/A	N/A			
Resolution			В	N/A	N/A			
			Т	N/A	N/A			
Temporal Resolution	h		G	Sub- hourly	Required for derivation of extreme indices.			
			В	1	Required for CDAS-mode reanalysis assimilation. Breakthrough is the monthly average necessary to inform the global, regional and national monitoring statements from WMO and members. Captures most of the variability in the diurnal cycle			
			Т	3 (daily Tx/Tm)	Minimum sampling of diurnal cycle			
Timeliness	daily		G	6-hourly	Allows use in near-real time reanalysis			
			В	daily	Required for CDAS-mode reanalysis assimilation. Allows use in daily climate monitoring products			
			Т	monthly	the monthly average is necessary to inform the global, regional and national monitoring statements from WMO and members. Allows use in monthly climate monitoring products			
Required	K		G	0.1	Uncertainty is assumed to include random and			
Measurement			В	0.5	systematic effects. Thorne et al. (2018)			
Uncertainty (2-sigma)			Т	1	Jones et al. (1997)			
Stability	K/decade		G	0.01	Required for large-scale averages over century scales			
			В	0.05	Required for large-scale averages over multi-decadal scales			
			Т	0.1	Required for regional averages over multi decadal scales			

Standards and References

Jones, P.D., Osborn, T.J. and Briffa, K.R., 1997: Estimating sampling errors in large-scale temperature averages. J. Climate 10, 2548-2568.

Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.

Thorne, P.W., Diamond, H.J., Goodison, B., Harrigan, S. Hausfather, Z., Ingleby, N.B., Jones, P.D., Lawrimore, J.H., Lister, D.H., Merlone, A., Oakley, T., Palecki, M., Peterson, T.C., de Podesta, M., Tassone, C., Venema, V. and Willett, K.M., 2018: Towards a global land surface climate fiducial reference measurements network. Int. J. Climatol. 38, 2760-2774, https://doi.org/10.1002/joc.5458.

1.3 ECV: Surface Wind Speed and Direction

1.3.1 ECV Product: Wind Direction (near surface)

Name	Wind Direction (near surface)							
Definition	Direction from which wind is blowing at a known height above the surface which is to be specified in the metadata.							
Unit	Degree true							
Note	Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.							
				Requirem				
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal	km		G	10				
Resolution			В	100	For consistency with other surface ECV			
			T	500				
Vertical	N/A		G	N/A	N/A			
Resolution			В	N/A	N/A			
			Т	N/A	N/A			
Temporal	h		G	Sub-				
Resolution			-	hourly				
			В	1	Captures most of the variability in the diurnal cycle			
			T	3	Minimum sampling of diurnal cycle			
Timeliness	h		G	6	Allows use in near-real time reanalysis			
			В	24	Allows use in daily climate monitoring products			
Demind			T	monthly	Allows use in monthly climate monitoring products			
Required Measurement	degrees		G	1 5				
Uncertainty			B T	10				
(2-sigma)			I	10				
Stability	degrees/decade		G	1				
			В	2				
			Т	5				
Standards	Kent, E.C., Rayne	er, N.A., Be	erry, D).I., Eastma	an, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith,			
and	S.R. and Willett, I	K.M., 2019	: Obs	erving Requ	uirements for Long-Term Climate Records at the Ocean			
References	Surface. Frontiers	s in Marine	Scien	ce 6, Articl	e 441, doi:10.3389/fmars.2019.00441.			

1.3.2 ECV Product: Wind Speed near Surface

Definition Speed of air at a known height above the surface which is to be specified in the metadata
Note Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Requirements Item needed Unit Metric [1] Value Derivation, References and Standards Km G 10 B 100 T 500 Vertical Resolution N/A Resolution N/A T N/A N/A T N/A N/A T Temporal h G Sub-
buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Requirements
Item needed
Horizontal Resolution
Resolution B 100 T 500 Vertical Resolution N/A N/A N/A T N/A N/A T N/A N/A Temporal h G Sub-
T 500 T 500
Vertical Resolution N/A G N/A N/A T N/A N/A Temporal h G Sub-
Resolution B N/A N/A T N/A N/A Temporal h G Sub-
T N/A N/A Temporal h G Sub-
Temporal h G Sub-
Resolution hourly
B 1 Captures most of the variability in the diurnal cycle
Timeliness h G 6 Allows use in near-real time reanalysis
B 24
T monthly
Required m/s G 0.1 Measurement B 0.5
Uncertainty T 1 (2-sigma)
Stability m/s/decade G 0.1
B 0.25 –
T 0.5
Standards Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith,
and S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean
References Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.

1.3.3 EC Product: Wind Vector (near Surface)

Name	Wind Vector	Wind Vector (near surface)								
Definition	Horizontal wind vector, at a known height above the surface which is to be specified in the metadata									
Unit	m/s									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	10						
Resolution			В	100						
			Т	500						
Vertical	N/A		G	N/A	N/A					
Resolution			В	N/A	N/A					
			Т	N/A	N/A					
Temporal Resolution			G	Sub- hourly						
			В	1	Captures most of the variability in the diurnal cycle					
			T	3	Minimum sampling of diurnal cycle					
Timeliness	h		G	6						
			В	24						
			Т	monthly						
Required	m/s		G	0.1						
Measurement			В	0.5						
Uncertainty (2-sigma)			Т	1						
Stability	m/s/decade		G	0.1						
			В	0.25						
			T	0.5						
Standards and References	Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.									

1.4 ECV: Surface Water Vapour

1.4.1 ECV Product: Dew Point Temperature near Surface

Name	Dew Point Temperature (near Surface)									
Definition					ed to become saturated with water vapor at a known specified in the metadata					
Unit	K									
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Willett et al. 2008 show that spatial scales of near surface dew point temperature are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.									
Item needed	Unit	Metric	[1]	Requir Value	Perivation References and Standards					
Horizontal	km	Wetric	G	10	Derivation, References and Standards Willett et al. 2008, based on analology with temperature					
Resolution	KIII		В	100	whiert et al. 2000, based on analoigy with temperature					
			T	500						
Vertical	N/A		G	N/A	N/A					
Resolution			В	N/A	N/A					
			Т	N/A	N/A					
Temporal Resolution	h		G	Sub- hourly						
			В	1	Captures most of the variability in the diurnal cycle					
The allers			T	3	Minimum sampling of diurnal cycle					
Timeliness			G	6-hourly	Allows use in near-real time reanalysis					
			В	daily monthly	Allows use in daily climate monitoring products Allows use in monthly climate monitoring products					
Required	K		G	0.1	Allows use in monthly climate monitoring products					
Measurement	IX.		В	0.5						
Uncertainty			T	1						
(2-sigma)										
Stability	K/decade		G	0.01	Required for large-scale averages over century scales					
			В	0.05	Required for large-scale averages over multi-decadal scales					
			Т	0.1	Required for regional averages over multi decadal scales					
Standards and References										

1.4.2 ECV Product: Relative Humidity near Surface

Name	Relative Humidity (nearsurface)								
Definition	Relative humidity at a known height above surface, with the height specified in the metadata Relative humidity is the ratio of the amount of atmospheric moisture present relative to the amount that would be present if the air were saturated with respect to water or ice to be specified in the metadata								
Unit	%								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Relative humidity is often derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008). The observation requirements for each of the humidity variables is based on those for dewpoint temperature and are approximate, for more detailed information see Bell (1996).								
				Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	10	By analogy with near surface dewpoint temperature				
Resolution			B T	100 500	via near surface air temperature, requirement therefore tentative.				
Vertical	N/A		G	N/A	N/A				
Resolution			В	N/A	N/A				
			Т	N/A	N/A				
Temporal Resolution	h		G B	Sub- hourly 1	As for horizonal resolution				
			Т	3					
Timeliness	h		G	6-hourly					
			В	daily					
			Т	monthly					
Required	%RH		G	0.5					
Measurement			В	2.5					
Uncertainty (2-sigma)			Т	5					
Stability	%RH/decade		G	0.05					
			В	0.25					
			Т	0.5					
Standards and References	Kent, E.C., Rayı Smith, S.R. and the Ocean Surfa Willett, K. M., D and Williams Jr. climate monitor Willett, K. M., W D., and Parker I	ner, N.A., I Willett, K ace. Front Junn, R. J. , C. N.: H ing, Clim. Villiams Jr D. E., 201	Berry, C.M., 2 iers in H., Th ladISD Past, ., C. N 3: Had	, D.I., Eastm 019: Observ Marine Scie horne, P. W. H land surfa 10, 1983-20 ., Dunn, R. dISDH: An u	dity, Guide 103, NPL, 1996. han, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., ving Requirements for Long-Term Climate Records at ince 6, Article 441, doi:10.3389/fmars.2019.00441. h., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., ince multi-variable humidity and temperature record for 206, doi:10.5194/cp-10-1983-2014, 2014. h., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. hipdated land surface specific humidity product for 657-677, doi:10.5194/cp-9-657-2013.				

1.4.3 ECV Product: Air Specific Humidity near Surface

Name	AtmosphericSpecific Humidity (near Surface)								
Definition	Air specific humidity at a known height above surface, with the height specified in the metadata. Specific humidity is the ratio of the mass of water vapour and the mass of moist air								
Unit	g/kg								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Willett et al 2008 show that spatial scales of surface specific humidity are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Specific humidity is generally derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008). Given the orders of magnitude variation in specific humidity between the tropics and the polar regions there is a strong case for latitudinally varying requirements for uncertainty and stability which would be more stringent in polar than extra-tropical than tropical climates. Current values are a compromise which may be indicative of extra-tropical locations.								
				Requirem					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	km		G B T	10 100 500					
Vertical	N/A		G	N/A	N/A				
Resolution			В	N/A	N/A				
			Т	N/A	N/A				
Temporal Resolution	h		G B	Sub- hourly					
			Т	3					
Timeliness	h		G	6					
1111131111033			В	daily					
			T	monthly					
Required	g/kg		G	0.1					
Measurement	_		В	0.5					
Uncertainty			Т	1					
(2-sigma) Stability	g/kg/decade		G	0.01					
Stability	g/kg/decade								
Standards and References	B 0.05 T 0.1 Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for climate monitoring. Climate of the Past, 9, 657-677, doi:10.5194/cp-9-657-2013.								

1.5 ECV: Precipitation

1.5.1 ECV Product: Accumulated Precipitation

Name	Accumulated precipitation									
Definition	Integration of solid and liquid precipitation rate reaching the ground over a time period defined in the metadata.									
Unit	mm									
Note	This ECV is designed to monitor the amount of precipitation globally in order to investigate the impact on the hydrological cycle, agriculture, drinking water supply or droughts. It is driven to support studies on a continental to global scale. This implies, that it is not designed to monitor extremes globally on a local to regional scale in space and time, as the requirements are different to answer both scientific questions.									
Item needed	Unit	Metric	F4.1	Require Value						
Horizontal		Metric	[1]	50	Derivation, References and Standards					
Resolution	km		G B	125						
Resolution			Т	250						
Vertical	N/A		G	N/A	N/A					
Resolution	IN/A		В	N/A	N/A					
Resolution			T	N/A	N/A					
Temporal Resolution	N/A aggregation		G	Monthly totals	IV/A					
	over period defines the		В	Seasonal totals						
	upper limit of temporal sampling		Т	Annual totals						
Timeliness	N/A		G	Monthly						
			В	Seasonal						
			Т	Annual						
Required	Mm		G	1						
Measurement			В	2						
Uncertainty (2-sigma)			Т	5						
Stability	mm/decade		G	0.02						
			В	0.05						
			Т	0.1						
Standards and References										

1.6 ECV: Surface radiation budget

1.6.1 Upward Long-Wave Irradiance at Earth Surface

Name	Upward Long-Wave Irradiance at Earth Surface									
Definition	Flux density of terrestrial radiation emitted by the Earth surface									
Unit	W/m²									
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.									
I to us us a stant	Linia	Maduia		Requirer						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G B	50 250						
Resolution			Т	1000						
Vertical	N/A		G	N/A	N/A					
Resolution	IV/A		В	N/A	N/A					
Resolution			T	N/A	N/A					
Temporal	h		G	1	1077					
Resolution			В	24						
			Т	720						
Timeliness	days		G		1 month after complete year					
			В							
			T							
Required	W/m2		G	1						
Measurement			В	5						
Uncertainty			T	10						
(2-sigma) Stability	W/m2/decade		G	0.2						
Stability	w/mz/uecaue		В	0.5						
			Т	1						
			'	,						
Standards										
and										
References										

1.6.2 ECV Product: Downward Long-Wave Irradiance at Earth Surface

Name	Downward Long-Wave Irradiance at Earth Surface									
Definition	Flux density of radiation emitted by the gases, aerosols and clouds of the atmosphere to the Earth's surface									
Unit	W/m ²	W/m²								
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.									
Manager de d	1114	D. C. a. d. a. d. a.		quireme						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	50						
Resolution			В	250						
Vertical	N/A		T G	1000 N/A	N/A					
Resolution	IN/A		B	N/A N/A	N/A					
Resolution			Т	N/A	N/A					
Temporal	h		G	1	IV/A					
Resolution	11		В	24						
			T	720						
Timeliness	days		G		1 month after the observations period					
		ĺ	В							
			Т							
Required	W/m2		G	1						
Measurement			В	5						
Uncertainty (2-sigma)			Т	10						
Stability	W/m2/decade		G	0.2						
			В	0.5						
			Т	1						
Standards and References										

1.6.3 ECV Product: Downward Short-Wave Irradiance at Earth Surface

Name	Downward Short-Wave Irradiance at Earth Surface									
Definition	Flux density of the solar radiation at the Earth surface									
Unit	W/m²									
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.									
				Require						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	50						
Resolution			В	250						
Mandiaal	NI/A		T	1000	NI/A					
Vertical Resolution	N/A		G	N/A	N/A					
Resolution			В	N/A	N/A					
T	1.		T	N/A	N/A					
Temporal Resolution	h		G	1						
Resolution			В	24 720						
Timeliness	days		G	720	1 month after complete year					
Timemiess	uays		В		i month after complete year					
			Т							
Required	W/m ²		G	1						
Measurement	VV/111		В	5						
Uncertainty			T	10						
(2-sigma)			'	10						
Stability	W/m²/decade		G	0.2						
			В	0.5						
			Т	1						
Standards and References										

2. UPPER AIR

2.1 ECV: Upper-air temperature

2.1.1 ECV Product: Atmospheric Temperature in the Boundary Layer

Name	Atmospheric Temperature in the Boundary Layer									
Definition	3D field of the atmospheric temperature in the Boundary Layer									
Unit	K									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table. The requirements for temperature in the boundary layer are mainly driven by needs for monitoring of fluxes for the goal threshold. Stability assumes independence of measurements between instruments permitting partial cancellation and is based upon need to be able to detect current trends which are c.0.2 K/decade. Boundary layer temperature is assumed to share spatial characteristics with surface temperature for which this has been characterized in e.g. Thorne et al., 2018 Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km	km	G	15	Hersbach et al. (2018), Thorne et al. (2005, 2018). This has been changed from the original 10km to 15 km to be consistent with NWP, although it is suggested that NWP should be at 10km. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.					
			В	100	Hersbach et al. (2018), Thorne et al. (2005, 2018). A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. For example, Waller et al. (2016) found that error correlations of surface temperature in observation-minus-background and observation-minus-analysis residuals from the Met Office high-resolution model range between 30 km and 80 km.					
			Т	500	Hersbach et al. (2018), Thorne et al. (2005, 2018). Minimum resolution needed to resolve synoptic-scale features. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics. Surface and boundary layer are tightly coupled, particularly in the lowermost boundary layer.					
Vertical Resolution	m		G	1	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). Determining fluxes requires this high vertical fidelity. Thus, this value has not been changed to be consistent with requirements for NWP as NWP thresholds would demonstrably fail to meet needs to quantify fluxes and close energy budget.					
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017) Minimum resolution considering the layer depth					
Temporal	h		G	Sub-	A typical 4D-Var timeslot length, a sub-division into which					
Resolution			В	hourly 6	observations are grouped for processing (ECMWF 2018) A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features Minimum resolution needed to resolve synoptic-scale					
					waves. For this reason, it has not been changed to ensure consistency with NWP requirements.					
Timeliness	h		G	3	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring A typical cut off time for the Climate Data Assimilation					
			ט	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					

			Т	24	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive
Required Measurement Uncertainty (2-sigma)	K	RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air	G B T	0.1 0.5 1	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.
Stability	K/decade	observations.	G B T	0.01 0.05 0.1	These values are based on the need to detect temperature trends such as those observed in recent decades (IPCC 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.
Standards and References	https://ww Fujiwara, Noverview of 1452, http Hersbach e NWP. ERA Ingleby et Meteor. So IPCC, 2013 the Fifth A: Qin, GK. (eds.)]. Ca JMA, 2019 Agency, Ap System (G Tokyo, Jap nwp/index Thorne, P. to 2002." J Thorne, P. network. I. Waller, J. E Diagnosing observation	ww.ecmwf.int/en M., 2017: Introd of the reanalysis s://doi.org/10.5 et al. (2018): Op Report Series, 2 al., 2016: Progr oc., 97, 2149-21 B: Climate Chang ssessment Repo Plattner, M. Tigr mbridge Univers Outline of the op pendix to WMO DPFS) and Num van. Available at htm. W., D. E. Parkel Journal of Geoph W. et al. (2018) JOC, http://onlir E.,* S. P. Ballard g horizontal and	/elibra uction syster 194/ac peratio 27. http ess to 61. httl ge 201 rt of th nor, S. sity Pro operat Techn erical http:/ r, et al nysical n, Towa nelibra d, S. L. inter-cound a	to the SF ms, Atmo cp-17-14 nal globa o://dx.do ward high tps://doi. 3: The PI ne Intergrent K. Allen, ess, Camional nunical Progrew Weather www.jm l. (2005). Research ards a glo ry.wiley.c	r1, Part I: Observations. ECMWF, UK, 82p. Available at -part-i-observations. PARC Reanalysis Intercomparison Project (S-RIP) and s. Chem. Phys., 17, 1417–

2.1.2 ECV Product: Atmospheric Temperature in the Free Troposphere

Name	Atmospheric Temperature in the Free Troposphere							
Definition		the atmospheric to	empera	ature in th	ne troposphere			
Unit	K The fallowin		ma !:: C		the forces the antiques of the forces that			
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-reatime continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations also made, for which explanations are given in notes below this table.							
				quireme				
Item needed	Unit	Metric	[1] G	Value 15	Derivation, References and Standards Hersbach et al. (2018), Thorne et al. (2005)			
Resolution	rizontal km solution		G	13	This has been changed from the original 10km to 15 km to be consistent with NWP, although it is suggested that NWP should be at 10km. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.			
			В	100	Hersbach et al. (2018), Thorne et al. (2005). A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. Hersbach et al. (2018) shows examples of the background error covariances prescribed for the latest-generation reanalysis, where the horizontal correlation decreases below 1/e within the length of 500 km or less in the troposphere. It should be noted that the correlation length depends on the data assimilation system used as well as the observing system assimilated for making initial conditions. In general, the correlation length tends to be shorter when the data assimilation system has a higher resolution and is more advanced as well as when the observations assimilated have a higher density. In order to produce reanalysis data with accuracy comparable to NWP, the requirements need to be similar to those for NWP, as already proposed in the table.			
			T	1000	Hersbach et al. (2018), Thorne et al. (2005) Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., (2005) show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.			
Vertical Resolution	km		G	0.01	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). This has not been changed to be consistent with NWP requirements as NWP has requirements that are too coarse for some such applications, e.g. determining fluxes requires high vertical fidelity.			
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
Temporal Resolution	h		G G	1	Minimum resolution considering the layer depth A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)			
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features			
			Т	24	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			

			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive
Required	K	RMS	G	0.1	These values are inferred based on the standard
Measurement		departures of	В	0.5	deviations of 6-hourly analysis with respect to the
Uncertainty (2-sigma)		observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.	T	1	monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.
Stability	K/decade		G	0.01	IPCC (2013)
			В	0.02	These values are based on the need to detect
			T	0.05	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.
Standards and	ECMWF, 20	18: IFS document	ation -	- Cy45r1,	Part I: Observations. ECMWF, UK, 82p. Available at
Standards and References	https://www.Fujiwara, Moverview of https://doi. Hersbach etwith NWP. Elngleby et a Meteor. Soo IPCC, 2013 the Fifth As Qin, GK. F (eds.)]. Carpp. JMA, 2019: Agency, App. JMA, 2019: Agency, App. Jebken, Fsummer methorne, P. Norther Meteorologic Center/nwp. Lübken, Fsummer methorne, P. Norther Meteorologic Center/nwp.	w.ecmwf.int/en/eli ., 2017: Introduct the reanalysis systorg/10.5194/acp- t al. (2018): Operat ERA Report Series al., 2016: Progress ., 97, 2149-2161. : Climate Change sessment Report of Plattner, M. Tignor mbridge University Outline of the operation of the op	brary/cion to stems, 17-14'ational, 27. hs toward https 2013: of the , S.K. r Press eration chnica and Nr , Japa /index Baum bhys. Fet al. (2	the SPARATINE Atmos. (17-2017, 19lobal relative high-relative high-relat	Part I: Observations. ECMWF, UK, 82p. Available at art-i-observations. C Reanalysis Intercomparison Project (S-RIP) and Chem. Phys., 17, 1417–1452,

2.1.3 ECV Product: Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere

Name	Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere								
Definition		the atmospheric							
Unit	K								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table. For vertical resolution, high vertical resolution is required to diagnose both multiple tropopauses but also trends in tropopause height.								
		ements							
I tem needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	km		G	15	Hersbach et al. (2018), Thorne et al. (2005) Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses. This has been changed from the original 10km to 15 km to be consistent with NWP, although it is suggested that NWP should be at 10km.				
			В	100	Hersbach et al. (2018), Thorne et al. (2005). A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.				
		T	500	Hersbach et al. (2018), Thorne et al. (2005) Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.					
Vertical Resolution	m	G	100	Thorne et al (2005). This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). Neither the current NWP resolution of 3km, nor the NWP goal of 300m, is adequate for locating the tropopause. Roughly corresponds to the assimilating model resolution					
			Б	100	(Fujiwara et al. 2017)				
			Т	250	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				
			T	24	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	K	RMS	G	0.1	These values are inferred based on the standard				
Measurement Uncertainty (2-sigma)		departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN	T	0.5	deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				

Stability	K/decade	Monitoring Centre for upper-air observations.	G	0.01	These values are based on the need to detect	
			ВТ	0.02	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.	
Standards and References						

2.1.4 ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere

Name	Atmospheric Temperature in the Middle and Upper Stratosphere									
Definition					n the middle and upper stratosphere					
Unit	K									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Correlation distances on climate timescales are much larger in the stratosphere than the troposphere. The dynamical processes are distinct as is the degree of stratification which leads to lower requirements for both vertical and spatial resolution. Some large-scale waves are common to the upper stratosphere and lower mesosphere, with horizontal scales of around 2500 km. Historical and projected future trends are larger so commensurately the stability requirements can be relaxed accordingly.									
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal Resolution	km	ou	G	50	Vincent (2015) The stratospheric effective resolution of most NWP systems					
			В	100	Vincent (2015) A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.					
			Т	1500	Vincent (2015) Minimum resolution needed to resolve synoptic-scale features.					
Vertical Resolution	km		G	0.5	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
			В	1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
Tomporal	h		T G	3 1	Minimum resolution considering the layer depth					
Temporal Resolution	П		G	ı	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					
			T	24	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	K	RMS	G	0.1	These values are inferred based on the standard					
Measurement		departures of	В	0.5	deviations of 6-hourly analysis with respect to the					
Uncertainty (2-sigma)	(2-sigma) val firs fiel in	values from first guess field values,	Т	1	monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.					
		applied by the GUAN Monitoring Centre for								
		upper-air observations.								
Stability	K/decade	SESSI VALIONS.	G	0.05	These values are based on the need to detect					
			В	0.1	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T)					
			T	0.2	corresponds to regions of large trend or 50% of observed					

	global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend. IPCC(2013)									
Standards	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at									
and	https://www.ecmwf.int/en/elibrary/18711-part-i-observations.									
References	Fujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and									
References	overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452,									
	https://doi.org/10.5194/acp-17-1417-2017, 2017.									
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer.									
	Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.									
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to									
	the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.									
	Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley									
	(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.									
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological									
	Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting									
	System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency,									
	Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-									
	nwp/index.htm.									
	Lübken, FJ., Berger, U., and Baumgarten, G. (2013), Temperature trends in the midlatitude									
	summer mesosphere, J. Geophys. Res. Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576.									
	Vincent, R. A., 2015: The dynamics of the mesosphere and lower thermosphere: a brief review.									

2.1.5 ECV Product: Atmospheric Temperature in the Mesosphere

Name	Atmospheric Temperature in the Mesosphere									
Definition		the atmospheric	c temp	erature i	n the mesosphere					
Unit	K The follow	ing rocular		oforma d	solphy from the viewnoint of resembly in					
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Horizontal resolution, vertical resolution, temporal sampling, and uncertainty thresholds are based on the scales and amplitudes of typical dynamical features of the mesosphere. Trends and current uncertainties are larger than in the troposphere, so stability criteria can also be relaxed. Requirements									
Item needed	Unit	Metric	[1]	Value						
Horizontal	km	Wetric	G	50	Garcia (2005), Vincent (2015)					
Resolution					Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses.					
			В	100	Garcia (2005), Vincent (2015) A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.					
			Т	1500	Garcia (2005), Vincent (2015) Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., (2005) show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.					
Vertical Resolution	km		G	0.5	Garcia (2005), Vincent (2015) This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
			В	1	Garcia (2005), Vincent (2015) Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	3	Garcia (2005), Vincent (2015) Minimum resolution considering the layer depth					
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					
			Т	24	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	K	RMS	G	0.1	Garcia (2005), Vincent (2015)					
Measurement Uncertainty (2-sigma)		departures of observed values from first guess field values, in accordance with the practical verification schemes	T	0.5	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.					
Stability	V/doods	applied by the GUAN Monitoring Centre for upper-air observations.	C	0.05	Lühkon et al. (2012)					
Stability	K/decade		G	0.05	Lübken et al. (2013)					

			В	0.1	These values are based on the need to detect						
			Т	0.2	temperature trends such as those observed in recent						
					decades (IPCC 2013; Lübken et al. 2013). (T)						
					corresponds to regions of large trend or 50% of observed						
					global-mean trend, (B) regions of medium trend or 20%						
					of global-mean trend, and (G) regions of small trend or						
					10% of global-mean trend.						
Standards	ECMWF, 2018	: IFS documen	ntatio	n – Cy45	r1, Part I: Observations. ECMWF, UK, 82p. Available at						
and					-part-i-observations.						
References	Fujiwara, M.,	2017: Introduc	ction	to the SF	PARC Reanalysis Intercomparison Project (S-RIP) and						
					s. Chem. Phys., 17, 1417–1452,						
		g/10.5194/acp									
	•	•			the mesosphere and lower thermosphere Observed by						
	· · · · · ·	SABER. Journal of Atmospheric Sciences, 62, 10.1175/JAS3612.1.									
		•			h-resolution, real-time radiosonde reports. Bull. Amer.						
	., .,	Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.									
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.										
	Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.										
	. / "	0	_		merical weather prediction at the Japan Meteorological						
	,										
					ress Report on the Global Data-processing and Forecasting						
	,	•			Prediction (NWP) Research. Japan Meteorological Agency,						
			ittp://	www.jm	a.go.jp/jma/jma-eng/jma-center/nwp/outline2019-						
	nwp/index.htr				O (0010) T						
		0		0	n, G. (2013), Temperature trends in the midlatitude						
					mos., 118, 13,347-13,360, doi:10.1002/2013JD020576.						
				• •	. "Revisiting radiosonde upper air temperatures from 1958						
					-Atmospheres 110(D18), doi:10.1029/2004JD005753						
	Vincent, R. A	., 2015: The d	lynam	ics of the	e mesosphere and lower thermosphere: a brief review.						

2.2 ECV: Upper-air wind speed and direction

2.2.1 ECV Product: Wind (horizontal) in the Boundary Layer

Name	Wind (horizontal) in the Boundary Layer								
Definition	3D field of th	e horizontal ved	ctor co	mponent	(2D) of the 3D wind vector in the BL				
Unit	m/s								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given in notes below this table. Additional goal requirements for the lowermost part of the boundary layer (values in parentheses) are for better sampling of micrometeorological phenomena and accurate calculation of fluxes. Requirements								
Item needed	Unit	Metric	[1]	Value					
Horizontal Resolution	km	Wettic	G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			T	500	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution			G	10(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	500	Minimum resolution considering the layer depth				
Temporal Resolution			G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018). Given large diurnal cycle in the boundary layer, higher temporal sampling is required. The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	60	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			T	720	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required Measurement Uncertainty (2- sigma)	m/s	RMS departures of observed values from first guess field values, in accordance with the practical	G B T	0.5 3 5	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				

		verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig. 3).					
Stability	m/s/decade		G	0.1	These values are inferred based on the RMS trends of		
			В	0.3	monthly analysis for the 1981-2010 period (Fig. 1).		
			Т	0.5	(T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.		
Standards and References	medium trend and (G) of small trend. ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017. Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.						

2.2.2 ECV Product: Wind (horizontal) in the Free Troposphere

Name	Wind (horizontal) in the Free Troposphere								
Definition		e horizontal ve	ctor co	mponent	(2D) of the 3D wind vector in the troposphere				
Unit Note	m/s The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-								
Note	time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
	explanations	are given wher		ded. Juirement	te				
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	km		G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next				
			В	100	generation reanalyses A typical horizontal error correlation length in first quess fields.				
			Т	1000	Minimum resolution needed to resolve synoptic- scale waves.				
Vertical Resolution	km		G	0.01	Global NWP requirements are not adequate to monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1.5	Minimum resolution considering the layer depth. The threshold for vertical resolution roughly corresponds to the resolution of the standard levels for the traditional radiosonde observation.				
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			T	12	Minimum resolution needed to resolve synoptic- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m/s	RMS	G	1	These values are inferred based on the standard				
Measurement		departures	В	3	deviations of 6-hourly analysis with respect to the				
Uncertainty (2-sigma)		of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations	Т	5	monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				

		(Fig.3).								
Stability	m/s/decade		G B	0.1	These values are inferred based on the RMS trends of monthly analysis for the 1981-2010 period (Fig.					
			T	0.5	1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.					
Standards and	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at									
References	https://www.ecmwf.int/en/elibrary/18711-part-i-observations.									
	Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017. Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-									
	center/nwp/o	utline2019-nw	o/inde	x.htm.						

2.2.3 ECV Product: Wind (horizontal) in the Upper Troposphere and Lower Stratosphere

Name	Wind (horizontal) in the Upper Troposphere and Lower Stratosphere								
Definition	3D field of th	e horizontal ved	ctor co	mponent	(2D) of the 3D wind vector in the UTLS				
Unit	m/s								
Note	time continua	ation as users o	f this E	CV. Som	inly from the viewpoint of reanalysis and its near-real- ne additional considerations are also made, for which				
	explanations are given where needed. Requirements								
Item needed	Unit Metric [1] Value Derivation and References and Standards								
Horizontal Resolution	km		G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			Т	500	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	km		G	0.025	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 0.01 km to 0.025 km. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	0.5	Minimum resolution considering the layer depth. To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.				
Temporal Resolution			G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	12	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m/s	RMS	G	1	These values are inferred based on the standard				
Measurement Uncertainty (2-sigma)		departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations	T	5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				

		(Fig.3).			
Stability	m/s/decade		G B T	0.1 0.3 0.5	These values are inferred based on the RMS trends of monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.
Standards and References	https://www. Fujiwara et al overview of th https://doi.or Ingleby et al. Meteor. Soc., JMA, 2019: C Agency, Appe System (GDP Tokyo, Japan nwp/index.ht Lamarque, J. process. Ency	ecmwf.int/en/e ., 2017: Introduce reanalysis syng/10.5194/acp , 2016: Progres 97, 2149-216 , utiline of the opendix to WMO TFS) and Numer . Available at hem. F., and P. Hess	library uction ystems -17-14 ss towa I. http: peratio echnic ical W ttp://v	to the SI s. Atmos. 417-2017 ard high- as://doi.or nal nume al Progre eather Pr www.jma. 5: Stratos eric Scien	resolution, real-time radiosonde reports. Bull. Amer. rg/10.1175/BAMS-D-15-00169.1. rical weather prediction at the Japan Meteorological ss Report on the Global Data-processing and Forecasting ediction (NWP) Research. Japan Meteorological Agency, go.jp/jma/jma-eng/jma-center/nwp/outline2019- sphere/troposphere exchange and structure – local ces (Second Edition), 262-268.

2.2.4 ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere

Name	Wind (horizontal) in the Middle and Upper Stratosphere							
Definition	3D field of th	e horizontal ved			(2D) of the 3D wind vector in the middle and upper			
	stratosphere.							
Unit	m/s							
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
				Requiren				
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards			
Horizontal Resolution	km		G	50	Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses			
			В	100	A typical horizontal error correlation length in first guess fields.			
			Т	3000	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical Resolution	km		G	1	This has been changed from the original 0.5 km to 1 km to be consistent with Global NWP.			
			В	2	This has been changed from the original 1 km to 2 km to be consistent with Global NWP. Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			T	3	Minimum resolution considering the layer depth.			
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.			
			Т	24	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			T	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	m/s	RMS	G	1	These values are inferred based on the standard			
Measurement		departures	В	5	deviations of 6-hourly analysis with respect to the			
Uncertainty (2-sigma)		of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations	Т	10	monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.			
		(Fig.3).						
Stability	m/s/decade		G	0.1	These values are inferred based on the RMS trends of			
			B T	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.			
Standards and References	https://www.	ecmwf.int/en/e	library	//18711-p	5r1, Part I: Observations. ECMWF, UK, 82p. Available at part-i-observations.			
	☐ Fujiwara e overview of t	t al., 2017: Intr he reanalysis sy	roducti ystems	ion to the s. Atmos.	SPARC Reanalysis Intercomparison Project (S-RIP) and Chem. Phys., 17, 1417-1452.			

https://doi.org/10.5194/acp-17-1417-2017.

 \square Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161.https://doi.org/10.1175/BAMS-D-15-00169.1.

□ JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.5 ECV Product: Wind (horizontal) in the Mesosphere

Name	Wind (horizontal) in the Mesosphere							
Definition					(2D) of the 3D wind vector in the mesosphere.			
Unit	m/s							
Note					inly from the viewpoint of reanalysis and its near-real-			
		arre given wher			ne additional considerations are also made, for which			
	Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards			
Horizontal Resolution	km		G	50	Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses			
			В	100	A typical horizontal error correlation length in first guess fields.			
			Т	3000	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical	km		G	1				
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			T	3	Minimum resolution considering the layer depth.			
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.			
			Т	24	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	m/s	RMS	G	1	These values are inferred based on the standard			
Measurement		departures	В	5	deviations of 6-hourly analysis with respect to the			
Uncertainty (2-sigma)		of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig. 3).	Т	10	monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.			
Stability	m/s/decade		G	0.1	These values are inferred based on the RMS trends of			
			B T	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.			
Standards and References					15r1, Part I: Observations. ECMWF, UK, 82p. Available 1-part-i-observations.			
Note: Clicc3	overview of t		ystems	s. Atmos.	e SPARC Reanalysis Intercomparison Project (S-RIP) and Chem. Phys., 17, 1417-7-2017.			
					gh-resolution, real-time radiosonde reports. Bull. Amer. g/10.1175/BAMS-D-15-00169.1.			

□ JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.6 ECV Product: Wind (vertical) in the Boundary Layer

Name	Wind (vertical) in the Boundary Layer								
Definition	3D field of the	vertical compo	nent c	of the 3D	wind vector in the BL				
Unit	cm/s								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed. Additional goal requirements for the lowermost part of the boundary layer (values in parentheses) are for better sampling of micrometeorological phenomena and accurate calculation of fluxes.								
Item needed	Unit	Metric	[1]	equirem Value	Derivation and References and Standards				
Horizontal Resolution	km	Wetric	G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses				
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.				
			T	500	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m	G	10(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)					
			В	100	Roughly corresponds to the assimilating model				
			Т	500	resolution (Fujiwara et al. 2017) Minimum resolution considering the layer depth				
Temporal Resolution			G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed except that the goal requirement has been relaxed from 10 min to 30 min as has been done for Horizontal Wind Velocity in the same layer. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018). Given large diurnal cycle in the boundary layer, higher temporal sampling is required. The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	60	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.				
			Т	720	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm/s	² Uncertainty	G	0.5	These values are inferred based on the standard				
Measurement Uncertainty (2-sigma)			B T	1.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
Stability	cm/s/decade		G	0.05	These values are inferred based on the RMS trends of				
			B T	0.1 0.15	monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium				

 $^{^2}$ RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.

	trend and (G) of small trend.
Standards	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available
and	at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.
References	Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and
	overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-
	1452. https://doi.org/10.5194/acp-17-1417-2017.
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer.
	Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological
	Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting
	System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency,
	Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-
	nwp/index.htm.

2.2.7 ECV Product: Wind (vertical) in the Free Troposphere

Name	Wind (vertic	al) in the Free	e Trop	osphere					
Definition					wind vector in the troposphere				
Unit	cm/s				· ·				
Note		The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-							
	time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
	explanations a	are given where		_{ea.} uiremen	te .				
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	km		G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses				
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.				
			Т	1000	Minimum resolution needed to resolve synoptic- scale waves.				
Vertical Resolution	km		G	0.01	Global NWP requirements are not adequate to monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1.5	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.				
			T	12	Minimum resolution needed to resolve synoptic- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			T	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm/s	Uncertainty ³	G	0.5	These values are inferred based on the standard				
Measurement Uncertainty (2- sigma)			B T	1.5 2.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
Stability	cm/s/decade		G B T	0.05 0.15 0.25	These values are inferred based on the RMS trends of monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of				
Standards and References	at https://ww Fujiwara et al. overview of th 1452. https://	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017. Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer.							

³ RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.

	JMA, 2019: Ou Agency, Apper Forecasting Sy Meteorological	utline of the open ndix to WMO Te vstem (GDPFS)	https://doi.org/10.1175/BAMS-D-15-00169.1. erational numerical weather prediction at the Japan Meteorological echnical Progress Report on the Global Data-processing and and Numerical Weather Prediction (NWP) Research. Japan o, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-/index.htm.
Extremes[3]			Reviewers are invited to suggest answers for these fields

2.2.8 ECV Product: Wind (vertical) in the Upper Troposphere and Lower Stratosphere

Name	Wind (vertical)in the Upper Troposphere and Lower Stratosphere							
Definition Unit	cm/s	vertical com	ропеп	t or the 3	D wind vector in the UTLS			
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
	Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards			
Horizontal Resolution	km		G	15	This has been changed from the original 10 km to 15 km to be consistent with Global NWP. Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses			
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.			
			T	500	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical Resolution	km	G	0.025	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 0.01 km to 0.025 km. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			Т	0.5	To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.			
Temporal Resolution			G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.			
			T	12	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	cm/s		G	0.5	These values are inferred based on the standard			
Measurement Uncertainty (2-sigma)			T T	1.5 2.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.			
Stability	cm/s/decade		G	0.05	These values are inferred based on the RMS trends of			
			В	0.15 0.25	monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend			
Standards and References	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017. Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting							

System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Lamarque, J. F., and P. Hess, 2015: Stratosphere/troposphere exchange and structure – local process. Encyclopedia of Atmospheric Sciences (Second Edition), 262-268. https://doi.org/10.1016/B978-0-12-382225-3.00395-9.

2.2.9 ECV Product: Wind (vertical) In the Middle and Upper Stratosphere

Name	Wind (vertical) In the Middle and Upper Stratosphere								
Definition					wind vector in the middle and upper stratosphere				
Unit	cm/s								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal Resolution	km		G	50	Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses				
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.				
			T	3000	Minimum resolution needed to resolve synoptic- scale waves.				
Vertical	km		G	0.5					
Resolution			В	2	This has been changed from the original 1 km to 2 km to be consistent with Global NWP. Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.				
			Т	24	Minimum resolution needed to resolve synoptic- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			T	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm/s	⁴ Uncertainty	G	1	These values are inferred based on the standard				
Measurement			В	3	deviations of 6-hourly analysis with respect to the				
Uncertainty (2- sigma)			Т	5	monthly climatology (Figs. 4, 5). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
Stability	cm/s/decade		G	0.05	These values are inferred based on the RMS trends				
			B T	0.15 0.25	of monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend				
Standards and	ECMWF, 2018	: IFS document	tation -	- Cy45r1					
References	medium trend and (G) of small trend. ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017. Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-								

⁴ RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations

2.2.10 ECV Product: Wind (vertical) in the Mesosphere

Name	Wind (vertical) in the Mesosphere							
Definition) wind vector in the mesosphere			
Unit	cm/s							
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
				quiremer				
Item needed Horizontal Resolution	km	Metric	[1] G	Value 50	Perivation and References and Standards Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses			
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.			
			Т	3000	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical	km		G	1				
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			Т	3	Minimum resolution considering the layer depth			
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP. A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.			
			Т	24	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	cm/s	5	G	2	These values are inferred based on the standard			
Measurement			В	6	deviations of 6-hourly analysis with respect to the			
Uncertainty (2- sigma)			Т	10	monthly climatology (Figs. 4, 5). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.			
Stability	cm/s/decade		G	0.1	These values are inferred based on the RMS trends			
			В	0.2	of monthly analysis for the 1981-2010 period (Fig.			
			Т	0.3	4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.			
Standards and References								

⁵ RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.

2.2.11 Figures

Figure 1. U-component of wind from JRA-55 for January
(a) zonal means averaged over the 1981-2010 period, (b) standard deviations of 6-hourly analysis with respect to the monthly climatology, (c) zonal mean trends of monthly analysis for the 1981-2010 period and (d) RMS trends.

Figure 2. As Figure 1 but for July.

Figure 3. (Top) global mean and (2nd) standard deviation of departure, (3rd) the number and (bottom) global mean observed values of radiosonde u-component of winds used in JRA-55 for (a) 30 hPa, (b) 100 hPa, (c) 250 hPa, (d) 500 hPa and (e) 850 hPa.

Figure 4. As Figure 1. but for vertical velocity from JRA-55. Note that the vertical velocity shown here is computed from the horizontal wind velocities using the continuity equation, thus the values represent averages for the horizontal resolution of JRA-55, which is approximately 55 km.

Figure 5. As Figure 4. but for July.

2.3 ECV: Upper-air water vapour

2.3.1 ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere

Name	Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere									
Definition	3D field of water vapour mixing ratios in the UTLS. Mixing ratio is the mole fraction of a substance in dry air.									
Unit	ppm									
Note	consideration f	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizonatal resolution. Vertical resolution needed for determining fine layer cirrus and complex tropopause								
		Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal	km		G	15						
Resolution			В	100						
			T	500						
Vertical	km		G	0.01						
Resolution			В	0.1						
			Т	0.25						
Temporal	h		G	3						
Resolution	Resolution		В	6						
			T	24						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	ppmv		G	0.1	Dessler et al. (2013)					
Measurement			В	0.25	Solomon et al. (2010)					
Uncertainty			Т	0.5	Uncertainty requirements are based on interannual					
(2-sigma)					variability and data quality needed to study					
Stability	ppmv/decade		G	<0.1	supersaturation and dehydration. Dessler et al. (2013)					
Stability	ppmv/decade		В	0.1	Solomon et al. (2010)					
			Т	0.1	Stability requirements are based on magnitudes of					
			1	0.23	seasonal and longer-term trends.					
Standards	Dessler, A. E.,	Schoeberl,	M. R.,	Wang, T.	., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric					
and					National Academy of Sciences of the United States of					
References	America, 110(4	15), 18087–	18091	. doi:10.	1073/pnas.1310344110					
					R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner,					
					eric Water Vapor to Decadal Changes in the Rate of Global					
	warming. Scie	nce, 327(59	70), 1	219-122	3. doi:10.1126/science.1182488					

2.3.2 ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere

Name	Water Vapour Mixing Ratio in the Middle and Upper Stratosphere								
Definition	3D field of water vapor mixing ratios in the middle and upper stratosphere. Mixing ratio is the mole fraction of a substance in dry air.								
Unit	ppm								
Note	consideration f	or horizonta	al reso	lution. H	nts for the same layer was used as a primary guiding owever, for the breakthrough, there is no justification to lat is significantly smaller.				
				Requir	ements				
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal	km		G	50					
Resolution			В	500					
			Т	1500					
Vertical	km		G	0.5					
Resolution			В	1					
			Т	3					
Temporal	h		G	3					
Resolution			В	6					
			Т	72					
Timeliness	h		G	1					
			В	168					
			Т	720					
Required	ppmv		G	0.1	Dessler et al. (2013)				
Measurement			В	0.25	Solomon et al. (2010)				
Uncertainty (2-sigma)			Т	0.5	Uncertainty requirements are based on observed seasonal and interannual variability.				
Stability	ppmv/decade		G	<0.2	Dessler et al. (2013)				
Stability	ppinv/decade		В	0.2	Solomon et al. (2010)				
			T	0.5	Stability requirements are based on magnitudes of longer-				
				0.5	term trends.				
Standards	Dessler, A. E.,	Schoeberl,	M. R.,	Wang, T.	, Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric				
and					National Academy of Sciences of the United States of				
References	America, 110(45), 18087–18091. doi:10.1073/pnas.1310344110								
	6-1				D. W. David J. C. Davida C. M. Carafarri T. J. C. Di II				
					R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner, eric Water Vapor to Decadal Changes in the Rate of Global				
					3. doi:10.1126/science.1182488				
	Warring. Scien	100, 02 / (0)	,0), 1	21/122	C. doi: 10.1120/30101100.1102400				

2.3.3 ECV Product: Water Vapour Mixing Ratio in the Mesosphere

Name	Water Vapour Mixing Ratio in the Mesosphere										
Definition	3D field of water vapour mixing ratios in the mesosphere. Mixing ratio is the mole fraction of a substance in dry air.										
Unit	ppm										
Note	consideration f	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizontal resolution. However, for the breakthrough, there is no justification to use the same value as for temperature that is significantly smaller.									
		Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards						
Horizontal	km		G	50							
Resolution			В	500							
			Т	1500							
Vertical	km		G	0.5							
Resolution			В	1							
			Т	3							
Temporal	h		G	3							
Resolution			В	6							
			T	72							
Timeliness	h		G	1							
			В	168							
			Т	720							
Required	ppmv		G	0.1	Dessler et al. (2013)						
Measurement			В	0.25	Solomon et al. (2010)						
Uncertainty			T	0.5	Uncertainty requirements are based on observed						
(2-sigma)					seasonal and interannual variability.						
Stability	ppmv/decade		G	< 0.2	Dessler et al. (2013)						
			В	0.2	Solomon et al. (2010)						
			Т	0.5	Stability requirements are based on magnitudes of longer-term trends.						
Standards	Dessler A E	Schoobert N	1 D \	Mana T	Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric						
and					National Academy of Sciences of the United States of						
References					073/pnas.1310344110						
		.5,7 10007	5071.	201. 10.1	57.57.57.50 11110						
					. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner, ic Water Vapor to Decadal Changes in the Rate of Global						
					. doi:10.1126/science.1182488						

2.3.4 ECV Product: Relative Humidity in the Boundary Layer

Name	Relative Hun	nidity in t	he Bo	undary Laye	r							
Definition	3D field of the relative humidity in the PBL. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).											
Unit	%	%										
Note		Vertical resolution is required for calculation of fluxes in the lower part of the boundary layer. McCarthy, 2007 notes significant spatial heterogeneity related to latitude of the observation.										
	Requirements											
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards							
Horizontal	km		G	15	McCarthy, (2007), consistency with T							
Resolution			В	100	McCarthy, (2007)							
			Т	500	McCarthy, (2007							
Vertical	m		G	1								
Resolution			В	10								
			Т	100								
Temporal Resolution	h		G	Sub- hourly(<1)								
			В	1								
			Т	3								
Timeliness	h		G	1								
			В	120								
			Т	720								
Required	%RH		G	0.1								
Measurement			В	0.5								
Uncertainty (2-sigma)			Т	1								
Stability	%RH/decade		G	0.1	Assumption that stability is per measurement system							
			В	0.5	leads to partial cancellation across a network of sites							
			Τ	1	performing measurements.							
Standards and References	McCarthy, 200)7 https://	doi.org	g/10.1002/jod	:.1611							

2.3.5 ECV Product: Relative Humidity in the Free Troposphere

Name	Relative Humidity in the Free Troposphere								
Definition	3D field of the relative humidity in the free troposphere. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).								
Unit	%								
Note	McCarthy, 200	7 notes sign	ificant	spatial h	eterogeneity related to latitude of the observation.				
				Require					
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards				
Horizontal	km		G	15	McCarthy, (2007)				
Resolution			В	100	McCarthy, (2007)				
			T	1000	McCarthy, (2007)				
Vertical	km		G	0.01					
Resolution			В	0.1					
			T	1					
Temporal Resolution	h		G	Sub- hourly					
			В	1					
			T	3					
Timeliness	h		G	1					
			В	120					
			Т	720					
Required	%RH		G	0.1					
Measurement			В	0.5					
Uncertainty (2-sigma)			T	1					
Stability	%RH/decade		G	0.1					
			В	0.5					
			Т	1					
Standards	McCarthy, 200	7 <u>https://do</u>	i.org/1	0.1002/j	oc.1611				
and References									

2.3.6 ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere

Name	Relative Hun	nidity in the	Uppe	r Tropos	phere and Lower Stratosphere					
Definition	3D field of the relative humidity in the UTLS. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).									
Unit	%									
Note	Vertical resolu	ition needed t	for det	ermining	fine layer cirrus and complex tropopause					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal	km		G	15						
Resolution			В	100						
			Τ	500						
Vertical	km		G	0.01						
Resolution			В	0.1						
			T	0.25						
Temporal	h		G	3						
Resolution			В	6						
			T	24						
Timeliness	h		G	1						
			В	120						
Dominod	%RH		T G	720 0.5	Deceler et al. (2012)					
Required Measurement	%RH	•	В	1	Dessler et al. (2013) Solomon et al. (2010)					
Uncertainty			Т	2	Uncertainty requirements are based on interannual					
(2-sigma)			'	2	variability and data quality needed to study					
					supersaturation and dehydration.					
Stability	%RH/decade		G	< 0.5	Dessler et al. (2013)					
			В	0.5	Solomon et al. (2010)					
			Т	2	Stability requirements are based on magnitudes of seasonal and longer-term trends.					
Standards	Dessler A F	Schoeher! N	A R V	Mana T	Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric					
and					National Academy of Sciences of the United States of					
References					073/pnas.1310344110					
		. , ,			•					
					. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner,					
					ric Water Vapor to Decadal Changes in the Rate of Global					
	Warming. Scient	ence, 327(59	70), 12	219-1223	. doi:10.1126/science.1182488					

2.3.7 ECV Product: Specific Humidity in the Boundary Layer

Name	Specific Humidity in the Boundary Layer									
Definition	3D field of the specific humidity in the PBL. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.									
Unit	g/Kg									
Note					on of fluxes in the lowermost boundary layer. eterogeneity related to latitude of the observation.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal	km		G	15	McCarthy, (2007)					
Resolution			В	100	McCarthy, (2007)					
			Т	500	McCarthy, (2007)					
Vertical	m		G	1						
Resolution			В	10						
			Т	100						
Temporal Resolution	h		G	Sub- hourly						
			В	1						
			Т	3						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	g/Kg		G	0.1						
Measurement			В	0.5						
Uncertainty (2-sigma)			T	1						
Stability	g/Kg/decade		G	0.01						
			В	0.05						
			Т	0.1						
Standards	McCarthy, 200	7 https://do	i.org/1	0.1002/j	oc.1611					
and References										

2.3.8 ECV Product: Specific Humidity in the Free Troposphere

Name	Specific Humidity in the Free Troposphere									
Definition		3D field of the specific humidity in the free troposphere. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.								
Unit	g/Kg									
Note	McCarthy 200	7) notes sigr	nifican	t spatial h	neterogeneity related to latitude of the observation.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal	km		G	15	McCarthy, (2007)					
Resolution			В	100	McCarthy, (2007)					
			Т	1000	McCarthy, (2007)					
Vertical	km		G	0.01						
Resolution			В	0.1						
			T	1						
Temporal	h		G	Sub-						
Resolution			_	hourly						
			B T	3						
Timeliness	h		G	1						
rimenness	П		В	120						
			Т	720						
Required	g/Kg		G	0.1						
Measurement	g/Kg		В	0.5						
Uncertainty			T	1						
(2-sigma)			'	'						
Stability	g/Kg/decade		G	0.01						
			В	0.05						
			Τ	0.1						
Standards and References	McCarthy, 200)7 https://do	oi.org/	10.1002/	joc.1611					

2.3.9 ECV Product: Integrated Water Vapour

Name	Integrated Water Vapour									
Definition	Total amount of water vapour present in a vertical atmospheric column.									
Unit	Kg/m2									
Note	Implicit assumption that IWV is intrinsically linked to boundary layer and surface humidity given the predominance of the water vapour in these regions in contributing to the column total. Because IWV scales with temperature, uncertainty and stability should be split latitudinally. The applied values here are for mid-latitude locations. They would be stricter (more relaxed) for polar (tropical) locations and in winter than summer.									
				Require						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	25						
Resolution			В	250						
			T	1000						
Vertical	N/A		G	N/A						
Resolution			В	N/A						
			T	N/A						
Temporal Resolution	h		G	0.20						
Resolution			B T	1 24						
Timeliness	h		G	24						
Timeliness	"		В	120						
			T	720						
Required	Kg/m2		G	0.1	Vary by latitude					
Measurement	g/		В	0.5	(see notes)					
Uncertainty			T	1						
(2-sigma)			·	·						
Stability	Kg/m2/decade		G	0.1	Vary by latitude					
			В	0.2	(see notes)					
			Т	0.5						
Standards										
and										
References										

2.3.10 ECV Product: Snow Thickness

Name	Snow	Depth								
Definition		the state of the s			stance between snowpack surface and the underlying surface					
	10			e sheets,	on ice shelves, glaciers, etc.					
Unit	m – average over a grid cell									
Note										
	Requirements									
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km	Size of grid cell	G	1	In complex terrain					
Resolution		cen	B T	5	The weed which alive vectors to the homeogeneous energy					
			ı	25	The resolution 1km refers to the homogeneous snow coverage in the frat field and high local variation in the mountain areas.					
Vertical	mm	Depth of	G							
Resolution		snow - the	В							
		perpendicular	Τ							
		distance								
		between snowpack								
		surface and								
		the								
		underlying								
		ground								
Temporal	days	time	G	6						
Resolution			В	24						
			Т	48	The frequency "Daily" refers to the rapid changing cycle retrieved by satellite observation					
Timeliness			G	3						
				hours						
			В	1						
			Τ	10						
Required	mm	2 Standard	G							
Measurement		Deviations	В							
Uncertainty (2-sigma)			Т	1						
Stability	mm		G	1						
			В	5						
			Т	25	The stability is recommended to be better than "10 mm".					
Standards	• Frei, /	A., Tedesco, M.,	Lee, S	., Foster,	J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A review					
and					ts, Advances in Space Research, 50, 1007–1029.					
References					Canadian development and use of snow cover information					
	from passive microwave satellite data, B. Choudhuly et al. (ed), Passive Microwave of Land-Atmosphere Interaction, Utrecht: VSP BV, 245-262.									
					nt: VSP BV, 245-262. Record Program (CDRP): Climate Algorithm Theoretical Basis					
					nere Snow Cover Extent, CDRPATBD-0156. Asheville, North					
		a, USA 28 pp.	(11011		S. S. S. S. S. Extern, Obit 71155 0100, 7610 ville, North					
	• Sturm	n, M., Taras, B.,			erksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow					
	Water I	Equivalent Using	Snow	Depth D	ata and Climate Classes. Jour. Hydromet. 11, 1380-1394.					

2.3.11 ECV Product: Area Covered by Snow

Name	Area Covered by Snow											
Definition	snow	at a given time			urface (ground, ice sea ice, lake ice, glaciers etc.) covered by							
Unit	m ² – average over a grid cell											
Note	2012)	Area covered by snow is observed in-situ and satellite observation (Robinson, 2013; Frei et al., 2012). The visible satellite identifies the snow cover with few millimeters of snow depth. The microwave radiometer can detect at first from few centimeters of snow depth.										
		Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal Resolution	m	Size of grid cell	G	1	The resolution 1km refers to the homogeneous snow coverage in the frat field and high local variation in the mountain areas.							
			В	5								
			Т	25								
Vertical			G									
Resolution			В									
			Т									
Temporal	days	Frequency of	G	6								
Resolution		measurement	В	24	The frequency "Daily" refers to the rapid changing cycle retrieved by satellite observation.							
Timeliness			T G	48 3 hours								
Timeliness			В	3 nours								
			Т	10								
Required	%	2 Standard	G	10								
Measurement	,0	Deviations	В									
Uncertainty			Т	5 %,	The Required Measurement Uncertainty (2-sigma) "5 %,							
(2-sigma)				local	local accuracy for 1/3 of 100m and 1km" refers to the							
				accuracy	complexity of snow cover edge.							
				for 1/3								
				of 100m and 1km								
Stability			G	Missing								
otability			В	wiissirig								
			T	4%								
Standards	• Frei,	A., Tedesco, M.	, Lee,		J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A review							
and	of glol	oal satellite-deriv	ved sn	ow products	s, Advances in Space Research, 50, 1007–1029.							
References					Canadian development and use of snow cover information							
					B. Choudhuly et al. (ed), Passive Microwave Remote Sensing t: VSP BV, 245-262.							
					Record Program (CDRP): Climate Algorithm Theoretical Basis							
					ere Snow Cover Extent, CDRPATBD-0156. Asheville, North							
	Caroli	na, USA 28 pp.		·								
	• Stur	m, M., Taras, B.			rksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow ta and Climate Classes. Jour. Hydromet. 11, 1380-1394.							

2.4 ECV: Earth radiation budget

2.4.1 ECV Product: Radiation Profile

Name	Radiation Profile										
Definition	Vertical profile of upward and downward LW and SW radiation components										
Unit	W/m2										
Note	For the application area of global climate monitoring no requirements exist. Thus the requirements of										
	the individual components are taken Requirements										
Item needed											
Horizontal	km	Wictito	G	10	Derivation, References and Standards						
Resolution	KIII		В	50							
			T	100							
Vertical	km		G	1							
Resolution			В	2							
			Т	4							
Temporal	h		G	1							
Resolution			В	24							
			Т	720	resolving diurnal cycle						
Timeliness	h		G	1							
			В	24							
			Т	720							
Required	W/m2		G	0.1/0.2	Shortwave radiation/Longwave radiation						
Measurement			В	0.2/0.4	A factor of 2 was applied to gain the breakthrough						
Uncertainty (2-sigma)			Т	0.4/0.8	value and a factor of 4 was applied to estimate the threshold value.						
Stability	W/m2/decade		G	0.025/0.05	Shortwave radiation/Longwave radiation						
- Staismity			В	0.05/0.1	Charter addition Early wave radiation						
			T	0.1/0.2							
Standards and											
References											

2.4.2 ECV Product: Solar Spectral Irradiance

Name	Solar Spectral	Irradiar	nce								
Definition	Downward Sho	rt-Wave II	radiar	nce at Top of	the Atmosphere when measured as a function of						
	wavelength it is	the spec	tral irr	adiance							
Unit	W/m2/µm										
Note	Downward Short-Wave Irradiance at Top of the Atmosphere is also known as Total Spectral Irradiance (TSI)										
	Requirements										
Item needed	Unit Metric [1] Value Derivation, References and Standards										
Horizontal	N/A		G								
Resolution			В								
			T								
Spectral			G								
resolution	< 290 nm		В	1nm							
	290-1000 nm			2nm							
	1000 1100										
	1000-1600 nm			5nm							
	1600-3200 nm			10nm							
	3200-6400 nm			20nm							
	6400- 10020nm			40nm							
	10020- 160000 nm			20000nm							
	160000 1111										
			Т								
Temporal	hr		G								
Resolution			В	0.4							
Timeliness	hr		T G	24							
Timeliness	111		В								
			Т	24							
Required	%		G	0.3							
Measurement			В	1.5	(200-3000 nm)						
Uncertainty			Т	3							
(2-sigma)	0/ /docado			0.02							
Stability	%/decade		G B	0.03 0.15	(200-3000 nm)						
			Т	0.15	(200 0000 1111)						
Standards				0.0							
and											
References											

2.4.3 ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere

Name	Downward Short-Wave Irradiance at Top of the Atmosphere						
Definition	Flux density of the solar radiation at the top of the atmosphere						
Unit	W/m ²						
Note	This EVC is formerly/also known as Total Solar Irradiance (TSI).						
Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards		
Horizontal	km		G				
Resolution			В				
			T				
Vertical	N/A		G	N/A	N/A		
Resolution			В	N/A	N/A		
			Т	N/A	N/A		
Temporal	hr		G				
Resolution			В				
			T	24			
Timeliness	hr		G	1			
			В	24			
			T	720			
Required	W/m2		G	0.04			
	Measurement		В	0.08			
Uncertainty (2-sigma)			Т	0.12			
Stability			G	0.01			
Stubility			В	0.02			
			T	0.04			
Standards							
and							
References							

2.4.4 ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere

Name	Upward Short-Wave Irradiance at Top of the Atmosphere						
Definition	Flux density of solar radiation, reflected by the Earth surface and atmosphere, emitted to space at the top of the atmosphere						
Unit	W/m²						
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.						
Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards		
Horizontal	km		G	10			
Resolution			В	50			
			T	100			
Vertical	N/A		G	N/A	N/A		
Resolution			В	N/A	N/A		
			Т	N/A	N/A		
Temporal	hr		G	1			
Resolution			В	24	Resolves the diurnal cycle		
			T	720	Allows a regional monitoring		
Timeliness	hr		G	1			
			В	24			
			Τ	720			
Required	W/m2		G	0.2	NOAA Tech Rep. NESDIS 134;		
Measurement			В	0.5	Ohring et al. 2003 (2005)		
Uncertainty			Т	1	A factor of 2 was applied to gain the breakthrough value		
(2-sigma)					and a factor of 4 was applied to estimate the threshold value.		
Stability	W/m2/decade		G	0.06	NOAA Tech Rep. NESDIS 134		
			В	0.15			
			Т	0.3			
Standards	Ohring 2004						
and	Ohring 2005						
References	NOAA Tech Rep. NESDIS 134						

2.4.5 ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere

Name	Upward Long-Wave Irradiance at Top of the Atmosphere						
Definition	Flux density of terrestrial radiation emitted by the Earth surface and the gases, aerosols and clouds of the atmosphere at the top of the atmosphere						
Unit	W/m²						
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.						
Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards		
Horizontal	km		G	10			
Resolution			В	50			
			T	100			
Vertical Resolution	N/A		G	N/A	N/A		
Resolution			В	N/A	N/A		
Tanananal	la u		T	N/A	N/A		
Temporal Resolution	hr		G B	1 24	Daily resolves the diurnal cycle		
Resolution			T	720	Monthly allows a regional monitoring		
Timeliness	hr		G	1	Monthly allows a regional monitoring		
rimenness	П		В	24			
			Т	720			
Required	W/m2		G	0.2	NOAA Tech Rep. NESDIS 134;		
Measurement	VV/1112		В	0.5	Ohring et al. 2003 / 2005)		
Uncertainty			T	1	A factor of 2 was applied to gain the breakthrough value		
(2-sigma)			·	·	and a factor of 4 was applied to estimate the threshold value.		
Stability	W/m2/decade		G	0.05	NOAA Tech Rep. NESDIS 134		
			В	0.1	Requirements for decadal stability and bias can be		
			Т	0.2	derived from theoretical assumptions about the		
					minimum anticipated signal to detect climate trends		
					(Ohring 2004, 2005). Ohring et al. assume the required		
					stability to be 1/5 of the expected climate signal. To detect a climate signal the stability should be better than		
					10 % of the uncertainty.		
Standards	Ohring 2004						
and	Ohring 2005						
References	NOAA Tech Rep. NESDIS 134						

2.5 ECV Cloud Properties

2.5.1 ECV Product: Cloud cover

Name	Cloud Cover						
Definition	2D field of fraction of sky filled by cloud						
Unit		Unitless (percentage)					
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and						
	improved knowledge about the interaction between clouds, aerosols and atmospheric gases						
	Requirements						
Item needed	Unit Metric [1] Value Derivation, References and Standards						
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in		
					the tropics.		
			В	100	To perform continental climate monitoring		
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.		
Vertical	Vertical N/A		G				
Resolution			В				
			Т				
Temporal hr Resolution	hr		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.		
			В	24	To perform climate monitoring of clouds on the global scale, a daily observing cycle will be sufficient.		
			T	720	To characterize seasonal and interannual changes		
Timeliness	hr		G	1			
			В	3			
			Т	12			
Required	%		G	3	Breakthrough is estimated with a factor of 2 times the		
Measurement			В	6	goal value, whereas the threshold is calculated with a		
Uncertainty			T	12	factor of 4 times the goal value.		
(2-sigma)	0//40004		_	0.2	Obving at al. 2005		
Stability	%/decade		G B	0.3	Ohring et al. 2005 Breakthrough is estimated with a factor of 2 times the		
			L R	1.2	goal value, whereas the threshold is calculated with a		
			ı	1.2	factor of 4 times the goal value.		
Standards and References	Ohring et al. 2005: https://doi.org/10.1175/BAMS-86-9-1303						

2.5.2 ECV Product: Cloud Liquid Water Path

Name	Cloud Liquid Water Path										
Definition	2D Field of atmospheric water in the liquid phase (precipitating or not), integrated over the total column										
Unit	kg/m2										
Note	This variable is identical to the also used "Cloud liquid water total column" which is given in g/m² and often used in NWP and climate models. The uncertainty values are below would then by rescaled from kg/m² to g/m². These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.										
		Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.						
			В	100	To perform continental climate monitoring.						
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.						
Vertical	N/A		G								
Resolution			В								
			T								
Temporal Resolution	hr		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.						
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.						
			T	720	To characterize seasonal and interannual changes						
Timeliness	hr		G	1							
			В	3							
			T	12							
Required	kg/m²		G	0.05	Breakthrough is estimated with a factor of 2 times the						
Measurement			В	0.1	goal value, whereas the threshold is calculated with a						
Uncertainty (2-sigma)			Т	0.2	factor of 4 times the goal value.						
Stability	kg/m²/decade		G	0.005	Ohring et al. 2005						
	J		В	0.01	Breakthrough is estimated with a factor of 2 times the						
			Т	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.						
Standards and References	Ohring et al. 20	005: https://	doi.org	y/10.117!	5/BAMS-86-9-1303						

2.5.3 ECV Product: Cloud Ice Water Path

Name	Cloud Ice Wat	er Path							
Definition	2D Field of atmospheric water in the solid phase (precipitating or not), integrated over the total column								
Unit	kg/m2								
Note	This variable is identical to the also used "Cloud ice water total column" which is given in g/m² and often used in NWP and climate models. The uncertainty values are below would then by re-scaled from kg/m² to g/m². These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
				Requirer					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental climate monitoring.				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical	N/A		G						
Resolution			В						
			Т						
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			Τ	720	To characterized seasonal and interannual changes				
Timeliness	hr		G	1					
			В	3					
			Τ	12					
Required	kg/m²		G	0.05	Breakthrough is estimated with a factor of 2 times the				
Measurement			В	0.1	goal value, whereas the threshold is calculated with a				
Uncertainty (2-sigma)			T	0.2	factor of 4 times the goal value.				
Stability	kg/m²/decade		G	0.005	Ohring et al. 2005				
	g/III / Goodde		В	0.003	Breakthrough is estimated with a factor of 2 times the				
			T	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Standards and References	Ohring et al. 20	005: https://d	doi.org	/10.1175	/BAMS-86-9-1303				

2.5.4 ECV Product: Cloud Drop Effective Radius

Name	Cloud Drop	Effective Ra	dius						
Definition	Ratio of inte	gral of water of	droplet	ts size dist	ribution in volume divided by integral in area (µm)				
Unit	μm	-							
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. Requirements for this ECV is are for the cloud top								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental climate monitoring				
			T	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical	N/A		G						
Resolution			В						
			Т						
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			T	720	To characterize seasonal and interannual changes				
Timeliness	hr		G	1					
			В	3					
			T	12					
Required	μm	As metric	G	1/2	Breakthrough is estimated with a factor of 2 times the				
Measurement		the	В	2/4	goal value, whereas the threshold is calculated with a				
Uncertainty (2-sigma)		uncertainty (RMS) is chosen which is given for 1-sigma	Т	4/8	factor of 4 times the goal value				
Stability	μm /decade		G	0.1/0.2	Values given separately for cloud water and ice effective particle size as water/ice. Ohring et al. 2005 specifies				
	В	0.2/0.4	stability and accuracy requirements separately for cloud water particle size as percentage forcing, and ice particle						
		Т	0.4/0.8	size as percentage feedback. Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References									

2.5.5 ECV Product: Cloud Optical Depth

Name	Cloud Option	cal Depth								
Definition	Effective depth of a cloud from the viewpoint of radiation extinction. OD = $\exp(-K.\Delta z)$ where K is the extinction coefficient [km-1], Δz the vertical path [km] between the base and the top of the cloud and the reference wavelength to be specified in the metadata.									
Unit	Dimensionless (percentage)									
Note		These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed					
			T	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical	N/A		G							
Resolution			В							
			Т							
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			Т	720	To characterize seasonal and interannual changes					
Timeliness	hr		G	1						
			В	3						
			T	12						
Required	%		G	20	Breakthrough is estimated with a factor of 2 times the					
Measurement			В	40	goal value, whereas the threshold is calculated with a					
Uncertainty (2-sigma)			Т	80	factor of 4 times the goal value.					
Stability	%/decade		G	2.0	Ohring et al. 2005 lists the stability requirements for cloud					
- Stability	707400446		В	4.0	optical thickness as 2% with a 10% accuracy.					
			T	8.0	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et al	2005: https:	//doi.c	org/10.11	75/BAMS-86-9-1303					

2.5.6 ECV Product: Cloud Top Temperature

Name	Cloud Top	Temperature								
Definition	Temperature	e of the top of	the cl	oud (high	nest cloud in case of multi-layer clouds)					
Unit	K									
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed					
			T	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical	N/A		G							
Resolution			В							
			Т							
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			T	720	To characterize seasonal and interannual changes					
Timeliness	hr		G	1						
			В	3						
			T	12						
Required	K		G	2	Breakthrough is estimated with a factor of 2 times the					
Measurement			В	4	goal value, whereas the threshold is calculated with a					
Uncertainty (2-sigma)			Т	8	factor of 4 times the goal value.					
Stability	K/decade		G	0.2	Ohring et al. 2005 lists the stability requirement for cloud					
	otability lividecade		В	0.4	top temperature as 0.2K/cloud emissivity per decade with					
			Т	0.8	accuracy as 1 K/cloud emissivity per decade. Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et al	. 2005: https:	//doi.o	org/10.11	75/BAMS-86-9-1303					

2.5.7 ECV Product: Cloud Top Height

Name	Cloud Top Height								
Definition	Height of the top of the cloud (highest cloud in case of multi-layer clouds								
Unit	km								
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. 3-D cloud top information are required where possible. This can be achieved via a combination of cloud optical depth vs cloud top height histograms								
Item needed	Unit Metric [1] Value Derivation, References and Standards								
Horizontal Resolution	km	Wetric	G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed				
			T	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical	N/A		G						
Resolution			В						
			T						
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			T	720	To characterize seasonal and interannual changes				
Timeliness	hr		G	1					
			В	3					
Doguirod	km		T G	0.30	Proplythrough is actimated with a factor of 2 times the				
Required Measurement	KIII		В	0.60	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a				
Uncertainty			T	1.2	factor of 4 times the goal value.				
(2-sigma)			1	1.2	3.1.1.1				
Stability	km/decade		G	0.03	Ohring et al. 2005 lists the required stability for cloud top				
			В	0.06	height as 30 m/decade with accuracy of 150 m/decade.				
			T	0.12	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Standards and References	Ohring et al	. 2005: https:	//doi.	org/10.11	175/BAMS-86-9-1303				

2.6 ECV: Lightning

2.6.1 ECV Product: Schumann Resonances

Name	Schumann Resonances									
Definition	Extremely Low Frequency (ELF) magnetic and electric field of the three first resonance modes (8 Hz, 14 Hz, 20 Hz).									
Unit	picoTesla2/Hz (magnetic field); volt2/m2/Hz (electric field)									
Note	Regular measurements of two horizontal magnetic field components at a location are enough to monitor globally Schumann Resonances. The magnetic field should be monitored at a level of ~0.1 picoTesla2/Hz. Additionally, to the magnetic measurements, one vertical electric measurement would document the full transverse electromagnetic (TEM) waveguide component at any given location. Note the estimate of the electric intensity assumes the wave impedance is half that of free space (377 ohms). In this context, the electric field should be monitored at a level of ~2.3 x 10-9 V2/m2/Hz.).									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	N/A		G							
Resolution			В							
Vertical	N/A		T G	N/A	N/A					
Resolution	IN/A		В	N/A	N/A					
resolution			Т	N/A	N/A					
Temporal Resolution	day		G	1/24	Suitable for investigation of the strong diurnal variation of tropical "chimney" regions and for use in multistation inversion methods for global lightning activity					
			В	1	Suitable for investigation of intraseasonal variations (5-day wave; MJO)					
			Т	30	Suitable for investigation of the global seasonal and annual variation, and the interannual ENSO variation					
Timeliness	day		G	1	For use in building a representative monthly estimate for climate purposes					
			В	-						
			Т	30	For climate-related studies; responsiveness of lightning to long-term temperature changes					
Required Measurement Uncertainty	femtoTesla2/Hz		G	1	Absolute coil calibration is feasible at the 1% level/ (Calibration of the vertical electric field is difficult, but possible)					
(2-sigma)			В	-						
			Т	5	Absolute coil calibration at the 5% level					
Stability	femtoTesla2/Hz		G	1	Given lightning sensitivity to temperature at the 10% per K level, one needs absolute calibration and stability at the 1% level to see fraction of 1K temperature changes					
			В	-						
			Т	5	Coil calibration should be checked and maintained to at least this level					
Standards					nces in the Earth–ionosphere cavity. Kluwer Academic					
and References	Nickolaenko, A.P Electromagnetic York/Dordrecht/L Polk, C., Schuma Press, Boca Rato Sátori G, V. Musl Betz, HD, U. Sch Review of Moder	Nickolaenko, A.P. and M. Hayakawa, Resonances in the Earth–ionosphere cavity. Kluwer Academic Publisher, Dordrecht, London, 2002. Nickolaenko, A.P. and M. Hayakawa, Schumann Resonance for Tyros: Essentials of Global Electromagnetic Resonance in the Earth–ionosphere Cavity. Springer, Tokyo/Heidelberg/New York/Dordrecht/London, 2014. Polk, C., Schumann Resonances, in CRC Handbook of Atmospherics. Volume 1, Ed., H. Volland, CRC Press, Boca Raton, Florida, 1982. Sátori G, V. Mushtak, and E. Williams, Schumann resonance signature of global lightning activity. In: Betz, HD, U. Schumann and P. Laroche (eds), Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. Springer, Berlin, pp 347–386. 2009. Sentman, D.D., Schumann Resonances. In Volland, H., Ed., Handbook of Atmospheric								

2.6.2 ECV Product: Total lightning stroke density

Definition	Name	Total lightning stroke density										
Unit Observing cycle. Unit Strokes per square km/year Data sets at the 1-map-per-month level require limited data storage, and thus should be simply posted on a publicity accessible website. The larger data sets reaching down to global resolutions of 1 degree with time resolution of a few hours should be maintained by the network managers, a provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales. Note						espending time interval and the space unit. The space						
Data sets at the 1-map-per-month level require limited data storage, and thus should be simply posted on a publicly accessible website. The larger data sets reaching down to global resolutions 0.1 degree with time resolution of a few hours should be maintained by the network managers, a provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales. Temporal Resolution		unit (grid box) observing cycle	should be	on the								
posted on a publicly accessible website. The larger data sets reaching down to global resolution of a few hours should be maintained by the network managers, a provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales. Note			.,									
Unit	Note	posted on a publicly accessible website. The larger data sets reaching down to global resolutions of 0.1 degree with time resolution of a few hours should be maintained by the network managers, and provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales.										
Degree pixels	Item needed	Unit										
Climate variability at the storm level	Horizontal		Wetric	G	0.1x0.1	Thunderstorms are complex, with different dynamics in different parts of the storm, for example the updraft region and the trailing stratosphere region. Therefore the net influence on global currents and climatology is likely to be very different from different sub-storm scales.						
Well as digital files, along with the Metadata with adequate time resolution to address both long term and short term detection efficiency variations within these data sets. N/A				В	0.25x0.25							
Resolution						adequate time resolution to address both long term and short term detection efficiency variations within these data sets.						
Temporal Resolution day day G 1/24 Lifetime of thunderstorm cell, diurnal cycle. For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B 1 Weather patterns, weekly and intraseasonal pattern like MJO T 30 Climate Scale day G 10 For high resolution climatology. It can be important special occasions to see direct impacts of events or mitigation immediately in order to react. B 30 Forecasting and model input T 365 For lightning climatology studies the provision of ye data within one year of data collection, and to prepit their data back as far as it is available from their network is necessary. Required Measurement Uncertainty (2-sigma) B - T 15 For climatologies Stability % G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 15 For climatologies Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al., 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1		N/A		G	N/A	N/A						
Comparison Com	Resolution			В	N/A	N/A						
Required Measurement Uncertainty (2-sigma) Stability Stability Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Activity back in time Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Product Definition and Users' Guilee. Volume 3: Level 1b Products, 1				Т	N/A	N/A						
Timeliness day G 10 For high resolution climatology. It can be important special occasions to see direct impacts of events or mitigation immediately in order to react. B 30 Forecasting and model input T 365 For lightning climatology studies the provision of ye data within one year of data collection, and to prepart their data back as far as it is available from their network is necessary. G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 15 For climatologies Stability % G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 10 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 10 For climatologies Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014, Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1		day				thunder day data in order to extend time series of lightning activity back in time						
Timeliness day G 10 For high resolution climatology. It can be important special occasions to see direct impacts of events or mitigation immediately in order to react. B 30 Forecasting and model input T 365 For lightning climatology studies the provision of yedata within one year of data collection, and to preparative their data back as far as it is available from their network is necessary. dimensionless G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B T 15 For climatologies Stability 8 G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B T 15 For climatologies Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1						like MJO						
special occasions to see direct impacts of events or mitigation immediately in order to react. B 30 Forecasting and model input T 365 For lightning climatology studies the provision of ye data within one year of data collection, and to prepitheir data back as far as it is available from their network is necessary. Required Measurement Uncertainty (2-sigma)												
Required Measurement Uncertainty (2-sigma) Stability Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, Bond of the GOES-R Geostation (MTG), BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1	Timeliness	day		G	10	special occasions to see direct impacts of events or						
data within one year of data collection, and to prepatheir data back as far as it is available from their network is necessary. Required Measurement Uncertainty (2-sigma) Stability G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 15 For climatologies Stability % G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 10 For climatologies Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) ROES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1				В	30	Forecasting and model input						
Validate thunder day data in order to extend time series of lightning activity back in time B T 15 For climatologies Stability % G 1 For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B - T 10 For climatologies Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1				Т	365							
Stability % G G T T T T T For climatologies For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time B T T T T T T T T T T T T	Measurement Uncertainty	dimensionless				validate thunder day data in order to extend time						
Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1	(2-Sigma)					For alimetalegies						
Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1	Stability	%				For high resolution climatology, also necessary to validate thunder day data in order to extend time						
Standards and References Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1				В	-	-						
Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1					10	For climatologies						
at https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf. GOES-R Series Data Book, 2019. CDRL PM-14 Rev A. May 2019, NOAA-NASA. Available at https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.	and	Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015 Virts, K.S. et al, 2013, Highlights of a New Ground-Based, Hourly Global Lightning Climatology, BAMS, 94 (9), https://doi.org/10.1175/BAMS-D-12-00082.1 GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1 November 2018 DCN 7035538, Revision 2.0, available at https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf.										

3. ATMOSPHERIC COMPOSITION

3.1 Greenhouse Gases

3.1.1 ECV Product: N₂O mole fraction

Name	N₂O mole fraction										
Definition	3D field of amount of N_2O (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles)										
Unit	ppb										
Note	N ₂ O was not	an ECV prod	uct in		S IP but should be added as it is a strong GHG.						
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	100							
Resolution			В	500							
			Т	2000							
Vertical	km		G	0.1							
Resolution			В	1							
			Т	3							
Temporal	hr		G	1							
Resolution			В	24	well mixed						
			Т	168	well mixed						
Timeliness	day		G	1							
			В	30							
			Т	180							
Required Measurement	ppb		G	0.05	Expert judgement and GAW Rep. No. 242 network compatibility						
Uncertainty (2-sigma)			В	0.1	Expert judgement and GAW Rep. No. 242 extended network compatibility						
			Т	0.3	Expert judgement, larger than B.						
Stability	ppb/decade		G	0.05	Within accuracy						
			В	0.05	Within accuracy/2						
			Τ	0.2	Within accuracy/2						
Standards and References	GAW Report, 242. 19 th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018 https://library.wmo.int/doc_num.php?explnum_id=5456										

3.1.2 ECV Product: CO₂ mole fraction

Name	CO ₂ mole fraction										
Definition	3D field of amount of CO ₂ (Carbon dioxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles)										
Unit	ppm										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	100							
Resolution			В	500							
			T	2000							
Vertical	km		G	0.1							
Resolution			В	1							
			Т	3							
Temporal	hr		G	1							
Resolution			В	24	well-mixed						
			T	168	well-mixed						
Timeliness	day		G	1							
			В	30							
			Т	180							
Required	ppm		G	0.1	GAW Rep. No. 242						
Measurement			В	0.2	GAW Rep. No. 242						
Uncertainty (2-sigma)			T	0.5	Expert judgement, larger than B.						
Stability	ppm/decade		G	0.1	Within accuracy						
			В	0.1	Within accuracy/2						
			Т	0.3	Within accuracy/2						
Standards and References	GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018 https://library.wmo.int/doc_num.php?explnum_id=5456										

3.1.3 ECV Product: CO₂ column average dry air mixing ratio

Name	CO asluman		ain mais						
Name	CO ₂ column average dry air mixing ratio								
Definition	2D column integrated number of molecules of the target gas (CO2) divided by that of dry air expressed in mole fraction								
Unit	μmol/mol.								
Note									
				Requirem					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	1	imaging				
Resolution			В	5	~OCO-2/3				
			T	10	CO ₂ M, CEOS document - LEO, GEO				
Vertical Resolution	N/A		G						
Resolution			В						
Tamananal	la sa		T	1	a a a a b a b i a a a m a				
Temporal Resolution	hr		G B	1	geostationary				
- Resolution			T	72	Blue report CO₂M				
Timeliness	day		G	1	GO2IVI				
Timemiess	uay		В	7					
			T	14					
Required	ppm		G	0.6	1-sigma: 0.3ppm				
Measuremen	ppiii			0.0	TCCON / Green report				
t Uncertainty			В	1	1-sigma: 0.5ppm				
(2-sigma)					Expert judgment based on improving CO ₂ M				
					requirements				
			Т	1.6	1-sigma: 0.8ppm				
					CO ₂ M requirements, WMO Report #242				
Stability	ppm/decad		G	0.1	Within accuracy / 5				
	е		В	0.2	Within accuracy / 5				
Chandanda	Div. D	- 2015 - T	T	0.3	Within accuracy / 5				
Standards and	CO ₂ emission		irus a Ei	uropean Op	perational Observing System to Monitor Fossil				
References			/sites/d	efault/files	/2019-09/CO2_Blue_report_2015.pdf				
References					Model Components and Functional Architecture				
					/2019-09/CO2_Red_Report_2017.pdf				
					Requirements for in situ Measurements				
		copernicus.eu	/sites/d	efault/files	/2019-09/CO2_Green_Report_2019.pdf				
	• CO ₂ M	osa int/Applica	ations/C)beorying t	he_Earth/Copernicus/Copernicus_High_Priority_Candid				
	ates	esa.iiit/Applica	3110115/C	bselvilig_i	rie_Lai tii/Coperfiicus/Coperfiicus_riigii_riioi ity_Candid				
	• MRD, v 2.0	:							
			int/docs	/EarthObs	ervation/CO2M_MRD_v2.0_Issued20190927.pdf				
					Requirements Document Version 2.1 (URDv2.1) for the				
					Gases (GHG)				
		esa-ghg-cci.org			(district appearable tions (as a)				
		ments: http:// report/white p		g/ourwork/	/virtual-constellations/acc/				
				ment/Virtu	ual_Constellations/ACC/Documents/CEOS_AC-				
		ite_Paper_Pub							
			_		on Carbon Dioxide, Other Greenhouse Gases and				
					7) Crotwell Andrew; Steinbacher M.; World				
		al Organizatior							
	https://librar	y.wmo.int/doc	_num.p	hp?explnui	m_id=5456				

3.1.4 ECV Product: CH₄ mole fraction

Name	CH₄ mole fraction										
Definition	3D field of amount of CH ₄ (Methane, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles)										
Unit	ppb										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	100							
Resolution			В	500							
			Т	2000							
Vertical	km		G	0.1							
Resolution			В	1							
			Т	3							
Temporal	hr		G	1							
Resolution			В	24	well-mixed						
			T	168	well-mixed						
Timeliness	day		G	1							
			В	30							
			Т	180							
Required Measurement	ppb		G	1	Expert judgement based on GAW Rep. No. 242 network compatibility						
Uncertainty (2-sigma)			В	2	Expert judgement based on GAW Rep. No. 242 extended network compatibility						
			Т	5	Expert judgment, larger than B.						
Stability	ppb/decade		G	1	Within accuracy						
			В	1	Within accuracy/2						
			Т	3	Within accuracy/2						
Standards and References		Green Report, 2019: Needs and High Level Requirements for in situ Measurements https://www.copernicus.eu/sites/default/files/2019-09/CO2_Green_Report_2019.pdf									
	Related Meas Meteorologica	GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018 https://library.wmo.int/doc_num.php?explnum_id=5456									

3.1.5 ECV Product: CH₄ column average dry air mixing ratio

Name	CH₄ column average dry air mixing ratio							
Definition					cules of the target gas (CH ₄) divided by that of dry air			
	expressed in			. 01 1110100	alos of the target gas (of 14) arriada by that of any an			
Unit	nmol/mol							
Note	Temporal res	olution an	d time		kept the same/compatible with CO ₂			
					uirements			
Item needed	Unit	Metric		Value	Derivation, References and Standards			
Horizontal	km		G	0.3	Imaging, permafrost region			
Resolution			В	1	Improved TROPOMI			
Mantinal	NI/A		T	10	TROPOMI/S5P			
Vertical Resolution	N/A		G B					
Resolution			Т					
Temporal	hr		G	1	Geo constellation + LEO			
Resolution	111		В	12	In the middle between threshold and goal			
			T	72	TROPOMI revisit, single geostationary			
Timeliness	day		G	1	review, emigre gesetational y			
			В	7				
			Т	14				
Required Measuremen t Uncertainty	ppb		G	7	1-sigma: 3.5ppb GeoCARB and MERLIN mission requirements, 0.2% of current CH_4 burden			
(2-sigma)			В	10	1-sigma: 5ppb Expert judgement based on expected improvement of TROPOMI/S5P			
			Т	20	1-sigma: 10ppb TROPOMI/S5P, CEOS doc, advancing from GCOS 2011			
Stability	ppb/decade		G	1	Within accuracy / 5			
			В	2	within accuracy / 5 within accuracy / 5			
Standards and References	CO ₂ emission https://www.	ns <mark>copernicu</mark> 2017: Bas	s.eu/s eline R	ites/defau equireme	an Operational Observing System to Monitor Fossil It/files/2019-09/CO2_Blue_report_2015.pdf Its, Model Components and Functional Architecture It/files/2019-09/CO2_Red_Report_2017.pdf			
	Green Report	, 2019: N	eeds a	nd High L	evel Requirements for in situ Measurements lt/files/2019-09/CO2_Green_Report_2019.pdf			
	CO ₂ M https://www. ates	esa.int/Ap	plicati	ons/Obse	rving_the_Earth/Copernicus/Copernicus_High_Priority_Candid			
	MRD, v 2.0: https://esam	ultimedia.	esa.int	t/docs/Ear	rthObservation/CO2M_MRD_v2.0_Issued20190927.pdf			
		nate Varia	ble (E0	CV) Green	ser Requirements Document Version 2.1 (URDv2.1) for the house Gases (GHG)			
	CEOS documents://ceos.o		k/virtu	ual-conste	llations/acc/			
		rg/docum	ent_m	anagemer	nt/Virtual_Constellations/ACC/Documents/CEOS_AC- lft2_20181111.pdf			
	Measurement Organization	t Techniqu (WMO) -	es (GC WMO,	GMT-2017 2018	eting on Carbon Dioxide, Other Greenhouse Gases and Related) Crotwell Andrew; Steinbacher M.; World Meteorological explnum_id=5456			

3.2 ECV: Ozone

3.2.1 ECV Product: Ozone mole fraction in the Troposphere

Name	Troposphere Ozone mole fraction in the troposphere								
Definition					es) in the troposphere divided by the total amount of all				
		in dry air (also							
Unit		ansferrable to							
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
				Require					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	1	1, 2, 3, 4,5,6,7				
Resolution			В	20					
Montecl	Long		T	100	12245/7				
Vertical Resolution	km		G B	3	1,2,3,4,5,6,7				
Resolution			Т	5					
Temporal	days		G	1/24	1, 2, 3, 4,5,6,7				
Resolution			В	1/4					
			T	30					
Timeliness	days		G	1/24					
			В	1					
Doguirod	0/		T	30	1 2 2 4 5 4 7 0				
Required Measureme	%		G B	5	1, 2, 3, 4,5,6,7,8 Requirements for uncertainty (%) and stability				
nt Uncertainty (2-sigma)			T	10	(%/decade) translate to wide mixing ratio requirement ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere.				
Stability	%/decade		G	<1	1, 2, 3, 4,5,6,7,8				
			B T	3	Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere.				
Standards and References	http://cci.esa 2. WMO (Wo Assessment of	a.int/sites/defa rld Meteorologi	ult/files cal Org tion: 20	s <mark>/filedepo</mark> ganization 018, Glob	quirements Document t/incoming/Ozone_cci_urd_v3.0_final.pdf), Stratospheric Ozone Changes and Climate in Scientific al Ozone Research and Monitoring Project–Report No. 58,				
	t.pdf 3. Climate M http://ensem 4. WMO (Wo in Scientific A Report No. 5: 2018. https:/ ssment.pdf 5. Gaudel, A trends of trop Elem. Sci. Ar 6. Tarasick, Wallington, J G. Foret, P. Z Gaudel, M. Li B. Hassler, T from 1877 to	onitoring User ables-eu.metoff rld Meteorologi Assessment of (8, 588 pp., Ger //www.esrl.noa, et al. (2018) cospheric ozonotth., 6(1), 39, ft D. W., I. E. Gal. Ziemke, X. Lit. Zanis, E. Weathn, M. Granados. Trickl and J. L	Group Gr	CCI Requin/cmug/Cjanization Depletion witzerland csd/asses spheric Of ant to clin (doi.org/1 O. R. Cool teinbache I, I. Petro z, A. M. T (2019), Ti s, trends	irements Baseline Documents imuG_PHASE_2_D1.1_Requirements_v0.6.pdf), Update on Global Ozone: Past, Present and Future : 2018, Global Ozone Research and Monitoring Project—d, sments/ozone/2018/downloads/Chapter3_2018OzoneAsse zone Assessment Report: Present-day distribution and nate and global atmospheric chemistry model evaluation, 0.1525/elementa.291 per, M. G. Schultz, G. Ancellet, T. Leblanc, T. J. er, J. Staehelin, C. Vigouroux, J. W. Hannigan, O. García, pavlovskikh, H. Worden, M. Osman, J. Liu, KL. Chang, A. hompson, S. J. Oltmans, J. Cuesta, G. Dufour, V. Thouret, ropospheric Ozone Assessment Report: Tropospheric ozone and uncertainties. Elem Sci Anth, 7(1), DOI:				

- 7. Galbally, IE, Schultz, MG, Buchmann, B, Gilge, S, Guenther, F, Koide, H, Oltmans, S, Patrick, L, Scheel, H-E, Smit, H, Steinbacher, M, Steinbrecht, W, Tarasova, O, Viallon, J, Volz-Thomas, A, Weber, M, Wielgosz, R and Zellweger, C. (2013), Guidelines for Continuous Measurement of Ozone in the Troposphere, GAW Report No 209, Publication WMO-No. 1110, ISBN 978-92-63-11110-4, Geneva, Switzerland: World Meteorological Organisation, 76. http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html
- 8. Fischer, E.V., Jaffe, D.A. and Weatherhead, E.C., 2011. Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: causes of variability and timescale for trend detection. Atmospheric Chemistry & Physics Discussions, 11(2).

3.2.2 ECV Product: : Ozone mole fraction in the Upper Troposphere / Lower Stratosphere (UTLS)

Name	Ozone mole fraction in the Upper Troposphere/Lower Stratosphere (UTLS)								
Definition	3D field of amount of O3 (expressed in moles) in the upper troposphere/lower stratosphere (UTLS) divided by the total amount of all constituents in dry air (also expressed in moles)								
Unit	% (directly tr	ansferrable to	mixing	ratios, mo	ol/mol)				
Note	% (directly transferrable to mixing ratios, mol/mol) The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
Literat	Linia	D/lateia	F4.7	Require					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	10	1, 2, 3, 4,5				
Resolution			В	50					
Vertical	km		T G	200 0.5	1,2,3,4,5				
Resolution	XIII		В	1	1,2,0,1,0				
			T	3					
Temporal	days		G	1/4	1, 2, 3, 4,5				
Resolution			В	1					
			T	30					
Timeliness	days		G	1/4					
			В	1					
Required	%		T G	30	1, 2, 3, 4,5				
Measureme	70		В	5	Requirements for uncertainty (%) and stability				
nt			T	10	(%/decade) translate o wide mixing ratio requirement				
Uncertainty					ranges based on a 50 ppb to 3 ppm range of ozone				
(2-sigma) Stability	%/decade		G	1	mixing ratios in the UTLS. 1, 2, 3, 4,5				
Stability	767 decade		В	2	Requirements for uncertainty (%) and stability				
			T	3	(%/decade) translate to wide mixing ratio requirement				
					ranges based on a 50 ppb to 3 ppm range of ozone				
					mixing ratios in the UTLS.				
Standards	1. Ozone Clir	nate Change In	itiative	User Rea	uirements Document				
and					/incoming/Ozone_cci_urd_v3.0_final.pdf				
References					, Stratospheric Ozone Changes and Climate in Scientific				
		of Ozone Deplet eva, Switzerlan			al Ozone Research and Monitoring Project–Report No. 58,				
					/ozone/2018/downloads/Chapter5_2018OzoneAssessmen				
	t.pdf	gc v/\		22	2.2. 2.2				
					rements Baseline Documents				
					MUG_PHASE_2_D1.1_Requirements_v0.6.pdf , Update on Global Ozone: Past, Present and Future				
	•				2018, Global Ozone Research and Monitoring Project—				
	Report No. 58	3, 588 pp., Ger	ieva, S	witzerland	1,				
		/www.esrl.noa	a.gov/d	csd/assess	sments/ozone/2018/downloads/Chapter3_2018OzoneAsse				
	ssment.pdf 5 Gaudel A	et al. (2018)	Tropo	snheric Oz	zone Assessment Report: Present-day distribution and				
					nate and global atmospheric chemistry model evaluation,				
					0.1525/elementa.291				

3.2.3 ECV Product: Ozone mole fraction in the Middle and Upper Stratosphere

Name	Ozone mole fraction in the Middle and Upper Stratosphere									
Definition	3D field of amount of O3 (expressed in moles) in the Middle and Upper Stratosphere divided by the total amount of all constituents in dry air (also expressed in moles)									
Unit		ansferrable to								
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.									
Item	Unit	Metric	[1]	Require Value	Derivation, References and Standards					
needed	Onit	Wietrio	L 13	Value	Derivation, Neierences and Standards					
Horizontal	km		G	20	1, 2, 3, 4,					
Resolution			В	100						
			Т	500						
Vertical	km		G	1	1,2,3,4,					
Resolution			В	3						
			Т	10						
Temporal	days		G	1/4	1, 2, 3, 4,					
Resolution	esolution		В	1						
			Т	30						
Timeliness	days		G	1/4						
			В	1						
			T	30						
Required	%				1, 2, 3, 4,					
Measureme nt			T		Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement					
Uncertainty			ı	15	ranges based on a 3 to 10 ppm range of ozone mixing					
(2-sigma)					ratios in the middle and upper stratosphere.					
Stability	%/decade		G	1	1, 2, 3, 4,					
			В	2	Requirements for uncertainty (%) and stability					
			Т	3	(%/decade) translate to wide mixing ratio requirement					
					ranges based on a 3 to 10 ppm range of ozone mixing ratios in the middle and upper stratosphere.					
Standards	1 Ozone Clin	nata Changa In	itiativo	Hear Dag	uirements Document					
and					/incoming/Ozone_cci_urd_v3.0_final.pdf					
References					, Stratospheric Ozone Changes and Climate in Scientific					
					al Ozone Research and Monitoring Project–Report No. 58,					
	588 pp., Gen	eva, Switzerlar	id, 201	8.						
		.esrl.noaa.gov/	csd/ass	sessments	/ozone/2018/downloads/Chapter5_2018OzoneAssessmen					
	t.pdf	onitorina User (Group (CL Requir	rements Baseline Documents					
		J			MUG_PHASE_2_D1.1_Requirements_v0.6.pdf					
					, Update on Global Ozone: Past, Present and Future					
				•	2018, Global Ozone Research and Monitoring Project-					
		8, 588 pp., Ger								
	•	//www.esrl.noa	a.gov/d	csd/assess	sments/ozone/2018/downloads/Chapter3_2018OzoneAsse					
	ssment.pdf									

3.2.4 ECV Product: Ozone Tropospheric Column

Name	Ozone Tropospheric Column									
Definition				lecules pe	er unit area in an atmospheric column extending from the					
		Earth's surface to the tropopause								
Unit	% (directly transferrable to Dobson units)									
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes. Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	5	1, 2, 3, 4,5					
Resolution			В	20						
			T	100						
Vertical	N/A		G	N/A	N/A					
Resolution			В	N/A						
			Т	N/A						
Temporal	days		G	1/24	1, 2, 3, 4,5					
Resolution	ion		В	1/4						
Timediana	dave		T	30						
Timeliness	days		G B	1/24						
			Т	30						
Required	%		G	5	1, 2, 3, 4,5					
Measureme			В	10	Requirements for uncertainty (%) and stability					
nt			Т	15	(%/decade) translate to wide Dobson Unit requirement					
Uncertainty					ranges based on a 20 to 45 DU range of ozone					
(2-sigma)	0/ /de e e de		0	1	tropospheric columns.					
Stability	%/decade		G B	2	1, 2, 3, 4,5 Requirements for uncertainty (%) and stability					
			Т	3	(%/decade) translate to wide Dobson Unit requirement					
			'	3	ranges based on a 20 to 45 DU range of ozone					
					tropospheric columns.					
Standards					quirements Document					
and References	•			•	t/incoming/Ozone_cci_urd_v3.0_final.pdf					
References), Stratospheric Ozone Changes and Climate in Scientific al Ozone Research and Monitoring Project–Report No. 58,					
		ieva, Switzerlar			ggg					
	https://www				s/ozone/2018/downloads/Chapter5_2018OzoneAssessmen					
	t.pdf		0	201.5	nonconta Decellos Decembrata					
					rements Baseline Documents MUG_PHASE_2_D1.1_Requirements_v0.6.pdf					
), Update on Global Ozone: Past, Present and Future					
					2018, Global Ozone Research and Monitoring Project—					
	Report No. 5	8, 588 pp., Ger	neva, S	witzerland	d,					
		//www.esrl.noa	a.gov/d	csd/asses	sments/ozone/2018/downloads/Chapter3_2018OzoneAsse					
	ssment.pdf	ot al. (2010)	Trong	anhoria O	zono Accoccment Deport, Procent deu distribution and					
					zone Assessment Report: Present-day distribution and nate and global atmospheric chemistry model evaluation,					
	Elem. Sci. Anth., 6(1), 39, https://doi.org/10.1525/elementa.291									

3.2.5 ECV Product: Ozone Stratospheric Column

Name	Ozone Stratospheric Column									
Definition	2Dfield of tot	al amount of O	3 molecu	iles per uni	it area in an atmospheric column extending from					
		o stratopause								
Unit	` ,	ransferrable to		•	I Ab a A Ab a company to the transfer of a A ab 1114 and a company to a company to the company t					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes. This data product must consider additional uncertainties introduced by errors in tropopause heights and must definitively state which tropopause definition was used.									
1 have	Linia	Matria		Requireme						
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	20	1, 2, 3, 4					
Resolution			В	100						
			T	500						
Vertical	N/A		G	N/A	N/A					
Resolution	olution		В	N/A						
Temporal	days		T G	N/A 1/24	1, 2, 3, 4					
Resolution	uays		В	1/24	1, 2, 3, 4					
			T	30						
Timeliness	days		G	1/4						
			В	1						
			T	30						
Required	%		G	1	1, 2, 3, 4 Requirements for uncertainty (%) and stability					
Measureme nt			B T	3 5	(%/decade) translate to wide Dobson Unit					
Uncertainty			'	5	requirement ranges based on a 150 to 450 DU range					
(2-sigma)					of ozone stratospheric columns.					
Stability	%/decade		G	1	1, 2, 3, 4					
			B T	3	Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit					
			1	3	requirement ranges based on a 150 to 450 DU range					
					of ozone stratospheric columns.					
Standards					rements Document					
and References					coming/Ozone_cci_urd_v3.0_final.pdf tratospheric Ozone Changes and Climate in Scientific					
References					Ozone Research and Monitoring Project–Report No. 58,					
		eva, Switzerlan								
		.esrl.noaa.gov/	csd/asse	ssments/oz	zone/2018/downloads/Chapter5_2018OzoneAssessmen					
	t.pdf 3. Climate Mo	onitoring User (Group CC	I Reguiren	nents Baseline Documents					
	http://ensem	bles-eu.metoff	ice.com/	cmug ['] /CMU	G_PHASE_2_D1.1_Requirements_v0.6.pdf					
					pdate on Global Ozone: Past, Present and Future					
		Assessment of C 8, 588 pp., Ger			018, Global Ozone Research and Monitoring Project-					
					ents/ozone/2018/downloads/Chapter3_2018OzoneAsse					
	ssment.pdf									

3.2.6 ECV Product: Ozone Total Column

Name	Ozone Total	l Column							
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from the Earth's surface to the upper edge of the atmosphere								
Unit	% (directly transferrable to Dobson units)								
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
Item	Unit	Metric	[1]	Require Value	Derivation, References and Standards				
needed	31110	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111	Value	Donation, References and Standards				
Horizontal	km		G	20	1, 2, 3, 4				
Resolution			В	100					
			Т	500					
Vertical	N/A		G	N/A	N/A				
Resolution			В	N/A					
			Т	N/A					
Temporal	days		G	1/24	1, 2, 3, 4				
Resolution	esolution		В	1					
			T	30					
Timeliness	days		G	1/24					
			В	1					
			T	30					
Required	%		G	1	1, 2, 3, 4				
Measureme			В	2	Requirements for uncertainty (%) and stability				
nt Uncertainty			Т	3	(%/decade) translate to wide Dobson Unit requirement ranges based on a 200 to 500 DU range of ozone total				
(2-sigma)					columns.				
Stability	%/decade		G	1	1, 2, 3, 4				
			В	2	Requirements for uncertainty (%) and stability				
			T	3	(%/decade) translate to wide Dobson Unit requirement				
					ranges based on a 200 to 500 DU range of ozone total				
					columns.				
Standards					uirements Document				
and References					/incoming/Ozone_cci_urd_v3.0_final.pdf , Stratospheric Ozone Changes and Climate in Scientific				
References					al Ozone Research and Monitoring Project–Report No. 58,				
		eva, Switzerlar							
					s/ozone/2018/downloads/Chapter5_2018OzoneAssessmen				
	t.pdf	_							
					rements Baseline Documents				
					MUG_PHASE_2_D1.1_Requirements_v0.6.pdf				
					, Update on Global Ozone: Past, Present and Future				
		Assessment of C 8, 588 pp., Ger			2018, Global Ozone Research and Monitoring Project–				
					a, sments/ozone/2018/downloads/Chapter3_2018OzoneAsse				
	ssment.pdf	,	a.gov/(J507 055050	Smortes, ezerte, ze re, downloads, enapter e_ze reezerteAsse				
	comont.pu								

3.3 ECV: Precursors (Supporting the aerosol and ozone ECVs)

3.3.1 ECV Product: CO Tropospheric Column

Name	CO Tropospheric Column										
Definition	2D field of total amount of CO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause										
Unit	ppb										
Note	Total column CO can approximate tropospheric CO. Observations exist for total column CO.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	10	In line with O3 & AOD & precursors						
Resolution			В	30							
			Т	100							
Vertical	N/A		G		Column Integrated						
Resolution			В								
			Т								
Temporal	day		G	1/24	In line with O3 & AOD & precursors						
Resolution			В	1							
			Т	30							
Timeliness	day		G	1							
			В	7							
			Т	30							
Required	ppb		G	1	Relaxed from GAW #242						
Measurement			В	5							
Uncertainty			T	10							
(2-sigma) Stability	ppb/decade		G	<1	accuracy/5						
Stability	ppb/decade		В	1	accuracy/5						
			Т	2							
Standards	CAW Poport 242:	CAW Poport		_	O/IAEA Meeting on Carbon Dioxide, Other Greenhouse						
and	Gases and Related										
References											
Morer Crices	Landgraf et al, 2016, AMT; https://doi.org/10.5194/amt-9-4955-2016										

3.3.2 ECV Product: CO Mole fraction

Name	CO Mole fraction										
Definition	3D field of amount of CO (Carbon monoxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles)										
Unit	Mole fraction										
Note	Tropospheric										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	10	close to the ozone requirements						
Resolution			В	30							
			T	100							
Vertical	m		G	1	in line with ozone requirements						
Resolution			В	3							
			Т	5							
Temporal	day		G	1/24	in line with ozone requirements						
Resolution	Resolution		В	1							
			T	30							
Timeliness	day		G	1							
			В	7							
			Τ	30							
Required	ppb		G	1							
Measurement			В	5							
Uncertainty (2-sigma)			T	10							
Stability	ppb/decade		G	<1							
			В	1							
			Τ	3							
Standards and References	•	GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017)									

3.3.3 ECV Product: HCHO Tropospheric Column

Name	HCHO Tropospheric Column										
Definition	2D field of total amount of HCHO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause										
Unit	Molecules/cm ²										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards						
Horizontal	km		G	10							
Resolution			В	30							
			T	100							
Vertical	N/A		G		Column Integrated						
Resolution			В								
			T	4.04							
Temporal Resolution	day		G	1/24	in line with O3 & aerosols.						
Resolution			B T	30							
Timeliness	day		G	1							
Timeliness	uay		В	7							
			T	30							
Required	Molecules/cm ²		G	Max (20%,	Pre-launch accuracy requirements for TROPOMI						
Measurement			Ü	8E15)	were 40-80 %; Vigoroux et al., 2020;						
Uncertainty			В	max	https://doi.org/10.5194/amt-13-3751-2020						
(2-sigma)				(40%,16E15)	Achievable with satellites, noting that accuracy is						
			T	max	typically dominated by fit error, can be largely						
				(100%,40E15)	improved by temporal and spatial averaging						
Stability			G	max(4%,							
			В	8E15)							
			В	max (8%,8E15)							
			Т	max							
				(20%,8E15)							
Standards											
and					(Cao et al, 2018, Kaiser et al 2018).						
References				al regions, Zhu et							
	Variability of the	remote a	tmospl	here, Wolfe et al 2	2019.						

3.3.4 ECV Product: SO₂ Tropospheric Column

Name	SO ₂ TropospericColumn										
Definition	2D field of total amount of SO ₂ molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause										
Unit	Molecules/cm ²										
Note											
Requirements											
Item needed	Unit Metric [1] Value Derivation and References and Standards										
Horizontal	km		G	10	in line with O3 & AOD & precursors						
Resolution			В	30							
			T	100							
Vertical	N/A		G		Column Integrated						
Resolution			В								
			T								
Temporal	day		G	1/24	in line with O3 & AOD & precursors						
Resolution			В	1							
			T	30							
Timeliness	day		G	1							
			В	7							
			Τ	30							
Required	Molecules/cm ²		G	max(30%,6E15)	Improved from Breakthrough						
Measurement Uncertainty			В	max(60%, 12E15)	Driven by relaxed NO ₂ accuracy (1.5* NO ₂ accuracy in %)						
(2-sigma)			Т	max(100%, 20E15)	Relaxed from Breakthrough, closer to achievable						
Stability	Molecules/cm ² /decade		G	max(6%,1.2E15)	Accuracy/5						
			В	max(12%, 2.4E15)							
			Τ	max(20%, 4E15)							
Standards and References		Accuracy is typically dominated by fit error, can be largely improved by temporal and spatial averaging, AMF for tropospheric SO2 is smaller than for HCHO and NO2									

3.3.5 ECV product: SO₂ stratospheric column

Name	SO ₂ stratospheric column										
Definition	$2D$ field of total amount of SO_2 molecules per unit area in an atmospheric column extending from the the tropopause to the top of the atmosphere										
Unit	Molecules/cm ²										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards						
Horizontal	km		G	10	in line with O3 & AOD & precursors						
Resolution			В	30							
			Т	100							
Vertical	N/A		G		Column Integrated						
Resolution			В								
			Т								
Temporal	day		G	1/24	in line with O3 & AOD & precursors						
Resolution			В	1							
			Т	30							
Timeliness	day		G	1							
			В	7							
			Т	30							
Required	Molecules/cm ²		G	max(30%,6E15)	According to tropospheric SO ₂ reqs						
Measurement Uncertainty			В	max(60%, 12E15)							
(2-sigma)			T	max(100%, 20E15)							
Stability	Molecules/cm ² /decade		G	max(10%,3E15)	Accuracy/3						
			В	max(20%,4E15)							
			Τ	max(30%, 7E15)							
Standards and References	Accuracy is typically don averaging, AMF for tropo				mproved by temporal and spatial D and NO2						

3.3.6 ECV Product: NO₂ Tropospheric Column

Name	NO ₂ Troposphe	ric Colum	ın								
Definition	$2D$ field of total amount of NO_2 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause										
Unit	Molecules/cm2 -										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards						
Horizontal	km		G	10	in line with O3 & AOD & precursors						
Resolution			В	30							
			T	100							
Vertical	N/A		G		Column Integrated						
Resolution			В								
			T								
Temporal	day		G	1/24	in line with O3 & AOD & precursors						
Resolution			В	1							
			T	30							
Timeliness	day		G B	7							
			Т	30							
Required	Molecules/cm2		G	max(20%,	Improved accuracy						
Measurement	Widlecules/CITIZ	112	G	1E15)	improved accuracy						
Uncertainty			В	max(40%,	Requirement according to 2016 IP						
(2-sigma)				2E15)	The second control of						
			Т	max(100%, 5E15)	Achievable accuracy.						
Stability	Molecules/cm2 /decade	:m2	G	max(4%, 1E15)	accuracy/5						
			В	max(8%, 1E15)							
			Т	max(20%, 1E15)							
Standards and References											

3.3.7 ECV Product: NO₂ mole fraction

	NO2 mole fraction									
Name	3D field of amount of NO_2 (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles) – in stratosphere									
Unit	ppb									
Note										
Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards					
Horizontal			G	20	in line with ozone profile					
Resolution			В	100						
			Т	500						
Vertical	km		G	1	in line with ozone profile					
Resolution			В	3	in line with ozone profile					
			Т	5	Relaxed from breakthrough					
Temporal			G	1/4						
Resolution			В	1						
			T	30						
Timeliness	day		G	1	in line with ozone profile					
			В	7						
Di	0/		T	30	Ashissashis with aslan assultation					
Required Measurement			G B	20 40	Achievable with solar occultation					
Uncertainty			Ь	40	Limb scatter, stellar occultation, joint random & systematic uncertainty (1-sigma) around 20%					
(2-sigma)			Т	60	Relaxed compared to limb scatter					
Stability	%/decade		G	4	accuracy/5					
			В	8	,					
			Т	12						
Standards			-		doi/abs/10.1029/91JD01344					
and					01/2008/acp-8-5801-2008.pdf					
References					on, https://doi.org/10.1029/2006JD007586 -10-9505-2010					
		copernicus.org								
					01/2007/ 016/j.jasrt.2019.06.021					
	3000 51 01	, =3,		3, 10, 10						

3.4 ECV: Aerosols Properties

3.4.1 ECV Product: Aerosol light extinction vertical profile (Troposphere)

Name	Aerosol li	ght extinction ve	rtical	profile (troposphere)
Definition		dependent sum of all path length.	aerosc	ol particle	light scattering and absorption coefficients per unit of
Unit	Km ⁻¹				
Note		here extinction pro er derived from lida	r or th	nermal ins	
				equirem	
Item needed	Unit	Metric	[1]		Derivation, References and Standards
Horizontal Resolution	km	Extinction profiles are retrieved by lidar observations so they typically refer to punctual observations. The reported value in terms of horizontal resolution are here mutated from the AOD.	G B T	50 100 500	
Mantical	Luna			0.0	
Vertical Resolution	km	Effective vertical	G B	0.2	
Resolution		resolution depends on the aerosol load strongly. The reported values refer to aerosol extinction @532 nm larger than 2.5 10-2 km-1	T	2	
Temporal	day	All the indicated	G	1	
Resolution		averaging times are assumed to be representative	B T	30 90	
Timeliness	Year		G	0,003	
			В	0.08	
			T	1	
Required	%	Uncertainty is	G	20	The reference value above (2.5 10-2 km-1), to which
Measurement Uncertainty (2-sigma)		dependent on the atmospheric aerosol load. These relative uncertainties refer to extinction values @532nm larger than 2.5 10-2 km-1	B	40 60	the uncertainty and stability and vertical resolution requirements apply, are related to the presence of aerosol. The value of 2.5 10-2 km-1 @532nm has been estimated within ACTRIS/EARLINET as indicative of the presence of an aerosol layer (ref : QC documentation available at www.earlinet.org)
Stability	%	These	G	10	Stability for users' requirements for this quantity are
	/decade	percentages refer to extinction values @532nm larger than 2.5 10-2 km-1.	B T	20 30	estimated from the corresponding AOD: for AOD the required stability is one half of the required uncertainty. This criterion has been adopted also for the aerosol extinction (which is the profiling analogue of AOD).
Standards and References	altitude, J. Pappalardo	Geophys. Res. Atn o, G., Amodeo, A.,	nos., 1 Apitule	20, 2913 y, A., Co	nse to externally mixed black carbon as a function of 3–2927, doi:10.1002/2014JD022849, 2015. meron, A., Freudenthaler, V., Linné, H., Ansmann, A., L., Wandinger, U., Amiridis, V., Alados-Arboledas, L.,

Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014. Welton, E.J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott. Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, Proc. SPIE, 4153, 151-158, 2001. Welton, E.J. K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, P.B. Russell, P.A. Durkee, P. Formenti, M.O. Andreae. Ground-based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with other Ground-based and Airborne Measurements, Tellus B, 52, 635-650, 2000.

Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003.

Shimizu, A., T. Nishizawa, Y. Jin, S.-W. Kim, Z. Wang, D. Batdorj and N. Sugimoto, Evolution of a lidar network for tropospheric aerosol detection in East Asia, Optical Engineering. 56 (3), 031219, 2016.

3.4.2 ECV Product: Aerosol light extinction vertical profile (stratosphere)

Name	Aerosol light extinction vertical profile in the stratosphere									
Definition					nt scattering and absorption coefficients per unit of					
Bermition		cal path length.	i deroc	or particle ligi	it scattering and absorption coefficients per anit of					
Unit	Km ⁻¹									
Note										
				Requirement						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Resolution	esolution km Extinction profiles are retrieved by lidar observations so they typically refer to punctual observations. But they are also inverted from limb and occultation soundings from satellite for which the spatial resolution can be used when aggregating individual	profiles are retrieved by lidar observations so	G B	500 (latitude) x 6000 (longitude)	In the stratosphere aerosols are fast spread in latitude bands. Therefore, higher resolution is required along meridians than within latitude bands Source: Aerosol_cci2 User Requirements Document v3.0, 2017					
		refer to punctual observations. But they are also inverted from limb and occultation soundings from satellite for which the spatial resolution can be used when aggregating								
Vertical	km	Effective	G	1	Finer vertical resolution is required near the					
Resolution		vertical resolution depends on the aerosol load strongly. The reported values refer to aerosol	В	1 (at 10km altitude) 2 (at 30 km altitude)	tropopause so that small to medium sized volcanic eruptions can be detected Source: Aerosol_cci2 User Requirements Document v3.0, 2017					
		than 2.5 10-2 km-1								
Temporal	day	All the indicated	G	5	With 5 days also minor volcanic eruptions can be					
Resolution		averaging times	В	5	detected, with 30 days only medium to large eruptions can be detected					
		are assumed to be representative	T	30	Source: Bingen, et al., 2017 and Popp, et al., 2016					
Timeliness	Year		G							
			В		N					
	0.4		T	1	No near-real time usage foreseen; climate studies are main use					
Required Measurement	%	Uncertainty is dependent on	G	20	Source: Aerosol_cci2 User Requirements Document					
Measurement Uncertainty		the atmospheric	B T	40	v3.0, 2017					
(2-sigma) ¯	9/	aerosol load. These relative uncertainties refer to extinction values @532nm larger than 2.5 10-2 km-1		20	V3.U, 2017					
Stability	% /decade	These	G	20	Source: Aerosol, coi? User Poquiroments Document					
	ruecade	refer to extinction values	B T	40	Source: Aerosol_cci2 User Requirements Document v3.0, 2017					

	@532nm larger than 2.5 10-2 km-1.
Standards and	ESA Aerosol_cci2, User Requirements Document, v3., 12.03.2017
References	Christine Bingen, Charles E. Robert, Kerstin Stebel, Christoph Brühl, Jennifer Schallock, Filip Vanhellemont, Nina Mateshvili, Michael Höpfner, Thomas Trickl, John E. Barnes, Julien Jumelet, Jean-Paul Vernier, Thomas Popp, Gerrit de Leeuw, and Simon Pinnock, Stratospheric aerosol data records for the Climate Change Initiative: development, validation and application to Chemistry-Climate Modelling, Remote Sensing of Environment, 2017, http://dx.doi.org/10.1016/j.rse.2017.06.002 Section 4.4 of: Thomas Popp, Gerrit de Leeuw, Christine Bingen, Christoph Brühl, Virginie Capelle, Alain Chedin, Lieven Clarisse, Oleg Dubovik, Roy Grainger, Jan Griesfeller, Andreas Heckel, Stefan Kinne, Lars Klüser, Miriam Kosmale, Pekka Kolmonen, Luca Lelli, Pavel Litvinov, Linlu Mei, Peter North, Simon Pinnock, Adam Povey, Charles Robert, Michael Schulz, Larisa Sogacheva, Kerstin Stebel, Deborah Stein Zweers, Gareth Thomas, Lieuwe Gijsbert Tilstra, Sophie Vandenbussche, Pepijn Veefkind, Marco Vountas and Yong Xue, Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci), Remote Sensing, 8, 421; doi: 10.3390/rs8050421, 2016

3.4.3 ECV Product: Multi-wavelength Aerosol Optical Depth

Name	Multi-wavelength Aerosol Optical Depth									
Definition	Multi-wavelength AOD is the spectral dependent aerosol extinction coefficient integrated over the									
	geometrical path length. (see note)									
Unit	dimensionless									
Note	Aerosol Optical Depth quantifies the extinction of the radiation while propagating in an aerosol layer and reflects the aerosol loading information in the view of remote sensing measurement. AOD varies with wavelength and this variation is related to the aerosol size and type. The GAW guidelines recommend AOD be measured at 3 or more wavelengths among 368, 412, 500, 675, 778, and 862 nm with a bandwidth of 5nm. 1) under some assumptions of aerosol models and surface reflectances, spectral-dependence of AOD permits retrieval of Fine-AOD and Coarse-AOD, defined as the fraction of total aerosol optical depth attributed to the "non-dust" and "dust" aerosols, respectively, which are important parameters to distinguish aerosol type. Also sea-salt is part of the coarse mode AOD 2) The absorption aerosol optical depth(AAOD) is the fraction of AOD related to light absorption and is defined as AAOD= $(1-\omega_0)\times AOD$ where ω_0 is the column integrated aerosol single scattering albedo.									
			F	Requiren	nents					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	20						
Resolution			В	100						
Vortical	NI/A		T	500	Column integrated					
Vertical Resolution	N/A		G B		Column integrated					
resolution			Т							
Temporal	day		G	0.01	All averages assumed to be representative					
Resolution			В	1	,					
			Т	30						
Timeliness	day		G	1						
			В	7						
	04 100		T	30						
Required Measurement	% or AOD		G	4% or 0.02						
Uncertainty			В	10%						
(2-sigma)				or						
				0.030						
			Т	20%						
				or 0.06						
Stability	%/decade		G	2% or						
	or AOD/decade			0.01						
			В	4% or						
			_	0.02						
			Т	10% or						
				0.04						
Standards	Levy, R. C., Matte	oo, S., Munc	hak, L	A., Ren	ner, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The					
and					nd and ocean, Atmos. Meas. Tech., 6, 2989–					
References	3034, https://doi				report with resolutions and recommendations", 2006					
					afer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben,					
	B. N., Lewis, J. R	., Campbell,	J. R.,	Welton,	E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements					
					Version 3 database – automated near-real-time quality					
	J				ning for Sun photometer aerosol optical depth (AOD) 9–209, https://doi.org/10.5194/amt-12-169-2019, 2019					
					neti, N., Kazadzis, S., Räisänen, P., García, R. D., Barreto,					
	A., Guirado-Fuen	tes, C., Ram	os, R.	, Toledar	no, C., Almansa, F., and Gröbner, J.: Aerosol optical					
					ERONET-Cimel radiometers from long-term (2005–2015)					
	4337, https://doi				Meas. Tech., 12, 4309- 9-2019, 2019					
					bner, J., and Wehrli, C.: The World Optical Depth					
	Research and Ca	ibration Cen	ter (V	VORCC) c	quality assurance and quality control of GAW-PFR AOD					
		Geosci. Instri	um. M	ethod. D	ata Syst., 7, 39-53, https://doi.org/10.5194/gi-7-39-					
	2018, 2018a. Kazadzis, S., Ko	uremeti N	Diém	oz H. Gi	röbner, J., Forgan, B. W., Campanelli, M., Estellés, V.,					
					E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P.					
	G., Tatsiankou, V	., Vuilleumie	er, L.,	Denn, F.	M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I.,					
	Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C									

Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185-3201, https://doi.org/10.5194/acp-18-3185-2018, 2018b. Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M., and Stier, P.: On the spatio-temporal representativeness of observations, Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, 2017.

3.4.4 ECV product: Chemical Composition of Aerosol Particles

Name	Chemica	Il Composition o	of aer	osol particle	es						
Definition	Aerosol particles are chemically composed of inorganic salts (ammonium sulfates, ammonium nitrate, and sea salt), organic compounds, Elemental Carbon (EC), dust, and volcanic ash. These species are often internally mixed within a particle with mixtures depending on sources (primary particles and gas phase precursors), atmospheric processes (gas to particle conversion, cloud processing, and condensation), and atmospheric conditions (T, P, and RH). The chemical composition of aerosol particles is often expressed in µg m ⁻³ .										
Unit	μg m ⁻³										
Note	Climate relevant properties of aerosol particles include hygroscopicity and refractive index. To a first approximation knowledge of the speciated amounts of key components (total inorganics – including sea-salt-, organics, Equivalent Black Carbon, mineral dust, and volcanic ash) is sufficient. Dust can be approximated from the difference between total Mass and sum of Inorganic, EC and OC. As a proxy for the chemical composition, combination of different properties can be used, e.g. size (from Extinction Angström exponent or Fine Mode fraction), absorption (from SSA or AAOD), absorption colour (Absorption Angström exponent). However, any such estimated characterization needs to be associated with a clear definition how a certain aerosol type was characterized and this should be part of the metadata in a product file.										
				Requireme							
Item needed	Unit	Metric	[1]		Derivation, References and Standards						
Horizontal Resolution	km		G B T	50 100 500	Horizontal definition based on Anderson et al., 2003						
Vertical	km		G	1	Information on both single point AND integrated						
Resolution			B T	5 Column integrated or single point	column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).						
Temporal Resolution	day	All averages assumed to be representative	G B T	1 30 90							
Timeliness	day		G B T	0.1 1 365							
Required Measurement Uncertainty (2-sigma)	%		G B T	20 40 60							
Stability	% /decade		G B T	2 2 4							
Standards and References	Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003. Aas, W., Mortier, A., Bowersox, V. et al. Global and regional trends of atmospheric sulfur. Sci Rep 9, 953 (2019) doi: 10.1038/s41598-018-37304-0. Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., Ten Brink, H., Tørseth, K., and Wiedensohler, A.: European aerosol phenomenology – 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.										

3.4.5 ECV Product: Number of Cloud Condensation Nuclei

Name	Number	of Cloud Conde	nsatio	on Nuclei							
Definition					e to a cloud droplet at a given supersaturations of						
Bommuon					the total CN for specific supersaturation typical of						
	atmospheric cloud formation.										
Unit	dimensionless										
Note	CCN depends on the supersaturation. Whenever provision of CCN for a range of supersaturation is										
	not available, a typical value of 0.5% can be used as typical supersaturation under atmospheric conditions.										
		The CCN number concentration can be approximated by the fraction of particles larger than a given									
	diameter from the particle number size distribution, generally the number of particles larger than										
	100 nm, which provide a good approximation of particles activated at « typical » supersaturation.										
	Where no other data are available, fine mode AOD can be used as a qualitative proxy for CCN										
Maria mandad	1114	B.O. Audio	F47	Requireme							
I tem needed	Unit	Metric	[1]		Derivation, References and Standards						
Horizontal Resolution	km		G B	50 100	Horizontal definition based on Anderson et al., 2003, Sun et al., 2019 and Laj et al., submitted						
Resolution			T	500	Surret al., 2017 and Laj et al., Submitted						
Vertical	km		G	1	Information on both single point AND integrated						
Resolution			В	5	column are valuable as a threshold. More precise						
			Т	Column	information can be obtained by using a profile at 5km						
				integrated	resolution (breakthrough) or 1 km (Goal).						
				or single							
Tomporal	day	All averages	C	point 0.5							
Temporal Resolution	day	All averages assumed to	G B	1							
Resolution		be	T	30							
		representative		30							
Timeliness	day	·	G	0.04							
			В	1							
Demined	07		T	365							
Required Measurement	%		G B	20 40							
Uncertainty			T	60							
(2-sigma)			•	00							
Stability	%		G	-	Stability difficult to evaluate as no trend in CCN are						
	/decade		В	-	currently available						
<u> </u>		T	Τ	-							
Standards and	Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003.										
References					uer, SE, Bergman, T, Carslaw, KS, Grini, A, Hamilton,						
					odros, JK, Lohmann, U, Luo, G, Makkonen, R, Matsui, H,						
					Tsigaridis, K, van Noije, T, Wang, HL, Watson-Parris,						
					skalakis, N, Decesari, S, Gysel-Beer, M, Kalivitis, N, Liu,						
					dner, R, Sfakianaki, M, Tsimpidi, AP, Wu, MX, Yu, FQ, article and cloud condensation nuclei number, with						
					nos. Chem. Phys., 19, 8591-8617 DOI:10.5194/acp-19-						
	8591-201				*						
					inen, H., Sellegri, K., Ovadnevaite, J., Bougiatioti, A.,						
					k, M., Schlag, P., Kristensson, A., Iwamoto, Y., Aalto, nn, M., Frank, G., Fröhlich, R., Frumau, A., Herrmann,						
					opoulos, N., Motos, G., Nenes, A., O'Dowd, C.D.,						
					n, L., Prévôt, A.S.H., Swietlicki, E., Pöhlker, M., Pöschl,						
	U., Artax	o, P., Brito, J., Ca	arbone	, S., Wiedens	sohler, A., Ogren, J., Matsuki, A., Yum, S.S., Stratmann,						
					hat do we learn from long-term cloud condensation						
					size distribution and chemical composition at regionally						
	representative observatories? Sci. Data 4:170003, doi: 10.1038/sdata.2017.3.										

3.4.6 ECV Product: Aerosol Number Size Distribution

Name	Aerosol Number Size Distribution								
Definition					describes the number of particles in multiple specified				
Unit	size rang	es.	iioti IDU	mon (FNSD)	describes the number of particles in multiple specified				
Note	dimensionless The PNSD can provide information about primary particle sources and secondary formation processes, as well as aerosol transport. PNSD can be directly measured in-situ or retrieved under some assumptions from AOD-related measurements or light extinction vertical profile measurements. For climate application, PNSD at ambient relative humidity is relevant. As a proxy for a directly measured aerosol number size distribution, the extinction (scattering) Angstrom exponent, defined as the dependence of $\ln(\text{AOD})$ (or $\ln(\sigma \text{sp})$) on $\ln(\lambda)$ can be used as a qualitative indicator of aerosol particle size distribution. Values near 1 indicate a particle size distribution dominated by coarse mode aerosol such as typically associated with mineral dust and sea salt. Values of near 2 indicate particle size distributions dominated by the fine aerosol mode (usually associated with anthropogenic sources and biomass burning). The total number of particles (i.e., condensation nuclei (CN)) is the integral of PNSD over all size ranges. It can be used to derive PNSD under some assumptions. Whenever PNSD is retrieved at dry size, ambient PNSD can be retrieved with the knowledge of particle composition and hydroscopic growth model under some assumptions Number of particles below 20 nm (in diameter) are highly variable due to the process of New Particle Formation and have little direct radiative impact. Regardless, the requirement for aerosol number size distribution ideally is provided for the full size spectrum (15 nm- 15 μ m) (defined as goal). Very important climate application can be made with knowledge of PNSD into 2 size ranges (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Aitken, Accumulation and coarse) is defined as breakthrough.								
				Requireme					
Item needed Horizontal Resolution	Unit km	Metric	[1] G B	Value 50 100 500	Derivation, References and Standards Horizontal definition based on Anderson et al., 2003, Sun et al., 2019 and Laj et al., submitted				
Vertical Resolution	km		G B T	1 5 Column integrated or single point	Information on both single point AND integrated column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).				
Temporal Resolution	day	All averages assumed to be representative	G B T	0.04 1 30					
Timeliness	day		G B T	0,25 30 365					
Required Measurement Uncertainty (2-sigma)			B	40% in number and 20% on size 60% in number in 40% in size	Size distribution is a 2-D variable thus uncertainty can either refer size or number. Uncertainty requirements are therefore provided for both dimensions. The uncertainty on size refers to the diameter of the mode of the distribution				
			Т	40% in number for fine- mode (0.05- 0.5um) and 100% in number for coarse- mode (0.5- 15um)					
Stability	% /decade		G B T	4					

Standards and References

Laj et al., A global analysis of climate-relevant aerosol properties retrieved from the network of GAW near-surface observatories, submitted to AMT

Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003.

Sun, J., W. Birmili, M. Hermann, T. Tuch, K. Weinhold, G. Spindler, A. Schladitz, S. Bastian, G. Löschau, J. Cyrys, J. Gu, H. Flentje, B. Briel, C. Asbach, H. Kaminski, L. Ries, R. Sohmer, H. Gerwig, K. Wirtz, F. Meinhardt, A. Schwerin, O. Bath, N. Ma, A. Wiedensohler, Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations, Atmospheric Environment, Volume 202, 2019, Pages 256-268, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2018.12.029.

Wiedenschler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.

3.4.7 ECV Product: Aerosol Single Scattering Albedo

Name	Aerosol Single Scattering Albedo									
Definition					ttering coefficient to the particle light extinction					
	coefficient									
Unit	dimensionless									
Note	The Aerosol Single Scattering Albedo ($\omega 0$ or SSA) is defined as $\sigma sp/\sigma ep$, or $\sigma sp/(\sigma sp + \sigma ap)$ where (σep), is the volumetric cross-section for light extinction and is commonly called the particle light extinction coefficient typically reported in units of Mm-1 (10-6 m-1). It is the sum of the particle light scattering (σsp) and particle light absorption coefficients (σsp), $\sigma ep = \sigma sp + \sigma ap$. All coefficients are spectrally dependent. Purely scattering aerosol particles (e.g., ammonium sulfate) have values of 1, while very strong absorbing aerosol particles (e.g., black carbon) may have values of around 0.3 at 550nm. The absorption aerosol optical depth(AAOD) is fraction of AOD related to light absorption and is defined as AAOD= $(1-\omega o)\times AOD$ where ωo is the column integrated single scattering albedo. Under some circumstances, AAOD at 550 nm is not as highly uncertain as SSA (in particular for low AOD) and can be used as ECV proxy for absorption. By part of the community AAOD is regarded better suited than SSA which is highly uncertain at low AOD.									
				Requireme	nts					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	50	Anderson et al., 2003					
Resolution			В	200	Laj et al., submitted)					
			Т	500						
Vertical	km		G	1	Information on both single point AND integrated					
Resolution			В	5	column are valuable as a threshold. More precise					
			Т	Column Integrated/ or single point	information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal). SSA is not directly measurable as integrated column or profile but can be retrieved under some assumptions.					
Temporal	day		G	0.01	All averages assumed to be representative					
Resolution			В	1						
			Т	30						
Timeliness	day		G	1						
			В	7						
			Т	30						
Required	dimensionless		G	0.1						
Measurement			В	0.2						
Uncertainty			T	0.4						
(2-sigma)	0/ /doods			0.1	Stability difficult to access due to look of alcor trands					
Stability	% /decade		G	0.1	Stability difficult to assess due to lack of clear trends observed					
			B	1	obsei veu					
Standards	laietal Aglo	hal analysi		-	aerosol properties retrieved from the network of GAW					
and References	near-surface of Collaud Coen e submitted to Al Sherman, J. P., A., and Sharma relationships fr 12517, https:// Schutgens, N.,	oservatorie t al., Multio CP . Sheridan, a, S.: A mu om four No (doi.org/10 Tsyro, S., Il represent	P. J., ulti-yea orth An 0.5194, Gryspe tativen	mitted to AMT I trend analysi Ogren, J. A., And study of low merican regions/acp-15-12487 eerdt, E., Gotoless of observa	Andrews, E., Hageman, D., Schmeisser, L., Jefferson, er tropospheric aerosol variability and systematic s, Atmos. Chem. Phys., 15, 12487–7-2015, 2015. D., Weigum, N., Schulz, M., and Stier, P.: On the ations, Atmos. Chem. Phys., 17, 9761–					

A2. Ocean ECVs

4. PHYSICS

4.1 Sea-surface temperature

4.1.1 ECV Product: Sea-surface temperature

Name	Sea surf	Sea surface temperature								
Definition	Radiative	Radiative skin sea surface temperature, or Bulk sea surface temperature at stated depth								
Unit	Kelvin (K	Kelvin (K)								
Note	The "bulk	The "bulk" temperature refers to the depth of typically 2 m, the "skin" temperature refers to within								
	the upper 1 mm.									
				Re	quirements					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km	length	G	5						
Resolution			В							
			T	100						
Vertical	N/A		G							
Resolution			В							
			Т							
Temporal Resolution	day	time	G	1/24	In situ measurements, daily in the case of satellite measurements					
			В							
			Т	7						
Timeliness	hour	time	G	3						
			В							
			T	24						
Required	K		G	0.05	Over 100 km scale					
Measurement			В							
Uncertainty			Т	0.3	Over 100 km scale					
(2-sigma)										
Stability	K		G							
			В							
0			T	245) (
Standards and References	•	Hydrograph 0139.1; 5 > sub-2000 n Palmer et a http://www.in the pape ocean temp Abraham et for ocean https://agu historical te I can't see quick scan Desbruyere Early Twen https://jourocean heat	nic Section 5 de la composition 6 de la compos	ection Daregree arror in 10): Futuanobs09. Udes GCC ure and s 2013): A 2013	review of global ocean temperature observations: Implications stimates and climate change; prary.wiley.com/doi/full/10.1002/rog.20022; Review of the easurements and comparison of estimated rates of OHC change. Indeed sampling characteristics or sensor accuracies (based on a					

4.2 Subsurface temperature

4.2.1 ECV Product: Interior temperature

Name	Interior temperature									
Definition	Seawater temperature measured with depth									
Unit	Kelvin									
Note					perature" in WMO RRR, and a difference between Upper					
	(<2000	m) and Deep	0 (>2	000 m) ocean is						
Item needed	Unit	Metric	[1]	Requir Value	Derivation, References and Standards					
Horizontal	km	Wetric	[1] G	Upper ocean:	Derivation, References and Standards					
Resolution	KIII		U	10						
				Deep ocean:						
				100						
				Coastal: 1						
			В	Upper ocean:						
				100 Deep ocean:						
				250						
			Т	Upper ocean:						
				300						
				Deep ocean:						
				500 Coastal: 10						
Vertical	N/A		G	Upper ocean:						
Resolution	14//(J	1						
			В	Upper ocean:						
			_	2						
			Т	Upper ocean: 10						
Temporal	day		G	Upper ocean:						
Resolution	aay		Ü	1						
				Deep ocean:						
				1						
			В	Coastal: 1/24						
			Ь	Upper ocean: 10						
				Deep ocean:						
				15						
			Т	Upper ocean:						
							30 Deep ocean:			
				30						
				Coastal: 30						
Timeliness	day	From	G	1 for real						
		observation		time/90 in						
		day		delayed						
			В	mode 1 for real						
			D	time/180 in						
				delayed						
			_	mode						
			Т	30 for real time/365 in						
				delayed						
				mode						
Required	K		G	Upper ocean:						
Measurement				0.001						
Uncertainty (2-sigma)				Deep ocean: 0.001						
(2-sigilia)			В	0.001						
			T	Upper ocean:						
				0.1						
				Deep ocean						
				:0.01 Coastal: 0.1						
Stability	K			Cuasial: U. I						

Standards and References

- Johnson et al (2015): Informing Deep Argo Array Design Using Argo and Full-Depth
 Hydrographic Section Data; https://journals.ametsoc.org/doi/full/10.1175/JTECH-D-150139.1; 5 x 5 degree array proposed with 15-day repeat cycle. Estimated reduction of sub2000 m OHC error in decadal trends from +/- 17 TW to +/- 3 TW.
- Palmer et al (2010): Future Observations for Monitoring Global Ocean Heat
 Content; http://www.oceanobs09.net/proceedings/cwp/Palmer-OceanObs09.cwp.68.pdf; Table
 1 in the paper includes GCOS Observation Requirements in WMO/CEOS Database for upper
 ocean temperature and salinity
- Abraham et al (2013): A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change; https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/rog.20022; Review of the historical temperature measurements and comparison of estimated rates of OHC change. I can't see any recommended sampling characteristics or sensor accuracies (based on a quick scan of the document).
- Desbruyeres et al (2017): Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat
 Hydrography; https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0396.1; "Estimate of global ocean heat uptake of 0.71 ± 0.09 W m−2 during 2006-2014 with < 2000m layer accounting for 90% of the observed change.

1. Sea-surface salinity

4.2.2 ECV Product: Sea-surface salinity

Name	Sea-surface salinity								
Definition			t or ne	ear the surface					
Unit		, g/Kg, or no							
Note									
				Require	ments				
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	km		G	10					
Resolution			_	Coastal: 1					
			B T	100					
			'	Coastal: 10					
Vertical			G	obubian 10					
Resolution			В						
			Τ						
Temporal	day		G	1-3					
Resolution			В						
			Т	7					
Timeliness									
Required Measurement Uncertainty (2-sigma)	1		G B T	0.1 psu for 25-km spatial average and monthly mean; 0.015 psu for 500- km spatial average and monthly mean	Synthesis of coordinated input from ESA based on community workshop and numerous published references Synthesis of coordinated input from ESA based on community workshop and numerous published				
				spatial average and monthly mean; 0.01 psu for 1000-km spatial average and annual mean	references				
Stability			G						
			В	0.01	Durach and Wijffel (2012) (showing trends of 0.4 psu				
	Т		1	psu/decade for 1000-km average	over 5 decades on 1000-km scales)				
Standards and References	•	 average Durack, Paul J., Susan E. Wijffels and Richard J. Matear (2012): Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000, Science, 336 (6080), pp 455-458. DOI: 10.1126/science.1212222 							

4.3 Subsurface salinity

4.3.1 ECV Product: Interior salinity

Name	Interior	Interior salinity									
Definition	Salinity	of seawater m	easur	ed with depth							
Unit		, g/Kg, or no ι									
Note					ty" in WMO RRR OSCAR database, and a difference						
	between	between Upper (<2000 m) and Deep (>2000 m) ocean is established									
		Requirements									
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	10							
Resolution			В								
			Т	100							
Vertical	m		G	Upper							
Resolution				ocean: 1							
				Deep ocean:							
				1							
			В								
			T	Upper							
			'	ocean: 10							
				Deep ocean:							
				100							
Temporal	day		G	1							
Resolution			В								
			Τ	30							
Timeliness	day		G	1							
			В								
			Т	30							
Required	1		G	Upper							
Measurement				ocean: 0.01							
Uncertainty				Deep ocean:							
(2-sigma)			-	0.005							
			B T	I la a sa							
			1	Upper ocean: 0.05							
				Deep ocean:							
				0.02							
Stability			G	0.02							
			В								
			T								
Standards											
and											
References											

4.4 Surface currents

4.4.1 ECV Product: Ekman currents

Name	Ekman c	Ekman currents										
Definition		Ocean vector motion occurring over the depth of the Ekman layer as a result of the combined action of surface winds and Coriolis force.										
Unit	m/s											
Note	111/5	II/S										
INOTE		Requirements Programments										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km	Metric	G	10	Derivation, References and Standards							
Resolution	KIII			20								
Resolution			В									
			T	25								
Vertical			G									
Resolution			В									
			Τ									
Temporal	hour		G	1								
Resolution			В									
			T	6								
Timeliness	hour		G	1								
			В									
			Τ	3								
Required	m/s		G	0.02								
Measurement			В									
Uncertainty			Τ	0.1								
(2-sigma)												
Stability			G									
			В									
			Τ									
Standards and References												
References												

4.4.2 ECV Product: Surface geostrophic current

Name	Ekman currents												
Definition					the depth of the Ekman layer as a result of the combined action								
	of surface	of surface winds and coriolis force.											
Unit	m/s	m/s											
Note													
		Requirements											
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards								
Horizontal	km		G	10									
Resolution			В	20									
			T	100									
Vertical			G										
Resolution			В										
			Т										
Temporal	day		G	1/4									
Resolution			В	1									
			Т	7									
Timeliness	day		G										
			В										
			Т	1									
Required	m/s		G	0.02									
Measurement			В										
Uncertainty			Т	0.1									
(2-sigma)													
Stability			G										
			В										
			T										
Standards	• \	Villas Bôas et	al. (2	019) Inte	egrated Observations of Global Surface Winds, Currents, and								
and	1	Waves: Requi	remer	nts and C	Challenges for the Next Decade. Front. Mar.Sci. 6:425. doi:								
References		10.3389/fmar	s.201	9.00425									
	•	http://globcu	rrent.	ifremer.t	fr/products-data								

4.5 Subsurface currents

4.5.1 ECV Product: Vertical mixing

Name	Vertical ı	Vertical mixing								
Definition	Ocean ved	ctor motion n	neasur	red at or near the	surface (at stated depth)					
Unit	m/s									
Note	A difference between Upper (<2000 m) and Deep (>2000 m) ocean is established									
		Requirements								
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal			G	10						
Resolution			В							
			Τ	100						
Vertical	m		G	Upper ocean:						
Resolution				1						
				Deep ocean:						
			_	10						
			В							
			Т	Upper ocean:						
				10						
				Deep ocean: 100						
Temporal	day		G	100						
Resolution	uay		В	7						
Resolution			T	30						
Timeliness	day		G	30						
Timeliness	day		В							
			T	30						
Required			G							
Measurement			В							
Uncertainty			Т							
(2-sigma)										
Stability			G							
			В							
			Τ							
Standards										
and										
References										

4.6 Sea level

4.6.1 ECV Product: Regional mean sea level

Name	Regional	mean sea le	evel								
Definition											
Unit											
Note											
	Requirements										
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal			G	10							
Resolution			В								
			Τ	100							
Vertical			G								
Resolution			В								
			Τ								
Temporal	day		G	1							
Resolution			В								
			Т	7							
Timeliness	day		G	30							
			В								
			Τ	365							
Required	mm		G								
Measurement			В								
Uncertainty (2-sigma)			Т	10	Over a grid mesh of 50-100 km						
Stability	mm/yr		G	0.3	Over a grid mesh of 50-100 km						
			В								
			Τ	< 0.1	Over a grid mesh of 50-100 km						
Standards and References	(c • E	T <0.1 Over a grid mesh of 50-100 km • Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.									

4.6.2 ECV Product: Global mean sea level

Name	Global n	Global mean sea level							
Definition				ırface rela	ative to a reference Geoid				
Unit	m	111 01 1110 000	arr se	11400 101	ativo to a rotorono coola				
Note									
				Re	quirements				
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal			G	10					
Resolution	km		В						
			T	100					
Vertical			G						
Resolution			В						
Tamananal			T	1					
Temporal Resolution	day		G	1					
Resolution	day		B T	20					
Timeliness			G	30 30					
Hilleliness	day		В	30					
	uay		Т	365					
Required			G	303					
Measurement	mm		В						
Uncertainty (2-			T	2-4	Values for the global mean. The uncertaintity over a global				
sigma)			•	- '	mesh is = 10 mm				
Stability			G	< 0.03	Target to be considered for the detection of permafrost				
	mm/yr				melting.				
					From the WCRP grand challenge on sea level and coastal				
					impacts the required stability in GMSL is <0.03 mm/yr per				
					decade (90%CL) to detect permafrost thawing.				
			В	< 0.1	Value per decade, 90% CI. Target to be considered for the				
					estimation of deep ocean warming and Earth energy				
			Т	< 0.3	imbalance Adapted for sea level impact detection (detection of a change				
			'	<0.3	in the rate of rise of the global mean sea level).				
					From the WCRP grand challenge on sea level and coastal				
					impacts the required stability in GMSL <0.3 mm/yr per decade				
					(90%CL) for the detection attribution of sea level rise.				
Standards and	• The	error budge	t of t	he globa	I mean sea level derived from satellite altimetry strongly relies				
References		•			ation of the platform, the instrumental, geophysical and				
					ns used to derive the sea level anomalies.				
					ao, Z., Hakuba, M.Z., Landerer, F.W., Stammer, D., Köhl, A.,				
					and Abraham, J.P., 2019. Measuring global ocean heat content lance. Frontiers in Marine Science, 6, p.432.				
					Horwath, M., Barletta, V.R., Benveniste, J., Chambers, D., Döll,				
					ifield, M. and Meyssignac, B., 2019. Observational requirements				
					obal mean sea level and its components over the altimetry era.				
	Frontier	s in Marine S	Scien	ce, p.582					
				Adaptati	on and Extremes				
	Relevant?	Sugg. Req.			Explanation				
	(Yes/No)	sufficient? (Yes/No)							
Adaptation[2]	Yes	Yes	The	e global n	nean sea level reflects changes of the ocean surface due to				
			wa	ter mass	transfer from the cryosphere, atmosphere and land and due to				
					changes (thermal expansion).				
Extremes[3]	Yes	Yes			ole of integrator of the consequences of climate change, the				
					sea level is adapted to monitor climate extremes such as innual variations.				
			EIV:	so intera	IIIIIuai varidliuris.				

4.7 Sea state

4.7.1 ECV Product: Wave height

Name	Wave height									
Definition	The distance between the trough of the wave and the adjacent crest of the wave. The significant wave height is the mean wave height (trough to crest) of the highest third of the waves in a wave spectrum									
Unit	cm	cm								
Note										
		Requirements								
I tem needed Horizontal Resolution	Unit km	Metric	[1] G	Value 1	Derivation, References and Standards Needed to resolve sea state variability in the coastal zone					
Resolution			В	25	Needed to resolve mesoscale variability					
			Т	100	Needed to resolve synoptic scales associated with atmospheric systems					
Vertical Resolution			G							
			В							
			Т							
Temporal Resolution	hour		G	1	Needed to resolve sea state variability in the coastal zone (tidal modulation of the sea state)					
			В	3	Needed to resolve sea state variability at the scale of storm events					
			T	24	Needed to compute robust monthly statistics					
Timeliness			G	7	To support assessment of extreme storm/cyclonic event					
			В	30	To support assessment of seasonal extreme event					
			Т	365	For assessment and reanalysis					
Required Measurement	%	Normalized root-mean-	G	5	Uncertainty goal, as proposed by Ardhuin et al., 2019					
Uncertainty (2-sigma)		squared error	В							
(L Sigilla)		01101	Т							
Stability	cm/decade		G	1	Needed to account for wave impact (wave setup) on coastal sea level					
			В							
			Т	10	Needed to detect the largest trends. Existing long-term observations show maximum					
Standards and References	• Ard	dhuin, F. et al	. 201	9. Observin	g Sea States. Front. Mar. Sci. 6.					
			Ad	laptation a	nd Extremes					
	Relevant? (Yes/No)	Sugg. Req. sufficient? (Yes/No)			Explanation					
Adaptation[2]	Yes	Yes			nay accelerate coastal erosion and enhance SLR impact. rds are needed to design coastal defence and infrastructure					
Extremes[3]	Yes	Yes	Extr	eme wave h forms, coas	neight impact marine safety, shipping routes, offshore tal areas. High-resolution data is needed to mitigate flood					

4.8 Surface stress

4.8.1 ECV Product: Surface stress

Name	Ocean su	Ocean surface stress										
Definition		The two-dimensional vector drag at the bottom of the atmosphere and the dynamical forcing at the										
		top of the ocean										
Unit	N/m ²	N/m ²										
Note												
	Requirements											
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km		G	10								
Resolution			В									
			Τ	100								
Vertical			G									
Resolution			В									
			Τ									
Temporal	day		G	1/24								
Resolution			В									
			Τ	1								
Timeliness	day		G	1/4								
			В									
			T	1								
Required	N/m ²		G	0.004	International Ocean Vector Wind Science Team; Cronin et a.							
Measurement			-	or 2%	(2019), https://doi.org/10.3389/fmars.2019.00430							
Uncertainty			В	0.00								
(2-sigma)			Т	0.02 or 8%	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
Stability	N/m ²		G	0.0006	International Ocean Vector Wind Science Team: Cronin et a.							
Stability	18/111		G	0.0006	(2019), https://doi.org/10.3389/fmars.2019.00430							
			В		(2017), https://doi.org/10.3309/illidi3.2017.00430							
			T	0.0001	International Ocean Vector Wind Science Team; Cronin et a.							
				3.0001	(2019), https://doi.org/10.3389/fmars.2019.00430							
Standards					(==),							
and												
References												

4.9 Ocean surface heat flux

4.9.1 ECV Product: Radiative heat flux

Name	Radiative heat flux									
Definition	The heat exchanged between the ocean and atmosphere resulting from the balance between radiation leaving the sea surface (reflected and emitted) and radiation passing through the sea surface into the ocean; often divided into an infrared or longwave and a visible or shortwave component.									
Unit										
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. It has units Watts per square meter. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Oceanographic convention is that a positive flux implies heating of the ocean. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. Downward shortwave at the surface is predominantly visible light. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater and is absorbed with depth. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.									
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	10	,					
Resolution			В	25						
			Т	100						
Vertical			G							
Resolution			В							
			Т							
Temporal Resolution	hour		G	1						
Resolution			В	3						
			Т	24						
Timeliness			G							
			В							
			Т							
Required Measurement	W/m²		G	10						
Uncertainty			В	15						
(2-sigma)			Т	20						
Stability	W/m²		G	2						
			В	2						
			Т	2						
Standards and References	 Meghan F. Cronin et al (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430 Meyssignac, Benoit, et al. "Measuring global ocean heat content to estimate the Earth energy imbalance." Frontiers in Marine Science 6 (2019): 432. 									

4.9.2 ECV Product: Sensible heat flux

Name	Sensible heat flux										
Definition		The heat exchanged between the atmosphere and ocean when a warmer ocean warms the air above or when a cooler ocean cools the air above.									
Unit											
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. It has units Watts per square meter. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Oceanographic convention is that a positive flux implies heating of the ocean. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. Downward shortwave at the surface is predominantly visible light. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater and is absorbed with depth. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km		G B T	10 25 100							
Vertical Resolution			G B T								
Temporal Resolution	hour		G B T	1 3 24							
Timeliness			G B T								
Required Measurement Uncertainty (2-sigma)	W/m²		G B T	10 15 20							
Stability	W/m²		G B T	2 2 2							
Standards and References	Fi h • M	 Meghan F. Cronin et al (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430 									

4.9.3 ECV Product: Latent heat flux

Name	Latent heat flux								
Definition	The heat exchanged between the ocean and atmosphere associated with the phase change from liquid to gas of seawater during evaporation or from gas to liquid during condensation.								
Unit									
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. It has units Watts per squared meter. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Oceanographic convention is that a positive flux implies heating of the ocean. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. Downward shortwave at the surface is predominantly visible light. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater and is absorbed with depth. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.								
I town wooded	Unit	Motrio	[1]	Requirements					
Item needed Horizontal Resolution	Unit km	Metric	[1] G	Value	Derivation, References and Standards				
			B T	25 100					
Vertical			G						
Resolution			В						
			Т						
Temporal	hour		G	1					
Resolution			В	3					
			Т	24					
Timeliness			G						
			В						
			Т						
Required	W/m²		G	10					
Measurement Uncertainty			В	15					
(2-sigma)			Т	20					
Stability	W/m²		G	2					
			В	2					
			Т	2					
Standards and References	 Meghan F. Cronin et al (2019). Air-Sea Fluxes With a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430 								
		 Meyssignac, Benoit, et al. "Measuring global ocean heat content to estimate the Earth energy imbalance." Frontiers in Marine Science 6 (2019): 432. 							

4.10 Sea ice

4.10.1 ECV Product: Sea Ice concentration

Name	Sea ice c	oncentratio	n						
Definition	Fraction of	f ocean area	cover	ed with	sea ice.				
Unit	% (or 1)								
Note	Sea ice concentration (in %) or sea ice area fraction (0 1) is a parameter that requires a spatial scale for reference; it is the fraction of a known ocean area (whatever size) covered with sea ice. Sea-ice extent (= the total area of all grid cells covered with sea ice above a certain threshold, often 15%) and sea-ice area (= the total area of all grid cells covered with sea ice using the actual sea-ice area fraction as weight) are indicators derived from sea-ice concentration. Some products report sea-ice concentration intervals, others are ice/water binary masks. The border of the sea ice covered area (below a given threshold, often 15% SIC) defines a sea ice edge.								
			543		equirements				
Item needed Horizontal Resolution	Unit km	Metric	[1] G	Value 1	Derivation, References and Standards Near-coast applications (e.g. Canadian Arctic Archipelago). Possibly not as sea-ice concentration but as ice / no-ice (edge). Regional analysis				
				25	Trend analysis, global monitoring				
			Τ	50	Limit for trend analysis, evaluation of global GCM simulations				
Vertical Resolution	N/A		G B T						
Temporal			G	<1	SIC vary on a sub-daily time scale (opening/closing of leads)				
Resolution	day		В	1	Ocean and Atmosphere reanalyses, daily monitoring of the sea- ice cover				
			Τ	7					
Timeliness			G	30					
	day		В	1-2	Operational monitoring with climate indicators, update of reanalyses				
			Τ	7	Update of monthly climate indicators				
Required			G	30					
Measurement	% SIC		В	5					
Uncertainty (2-sigma)			T	10					
Stability			G	5					
	%/dec		В						
			Τ						
Standards and References	• () F	/ariables of th Dno, J., H. Ta Reduction in t	ne Glo tebe, he Ard	bal Clima and Y. K ctic Sea	2022). A New Structure for the Sea Ice Essential Climate ate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1. comuro, 2019: Mechanisms for and Predictability of a Drastic Ice: APPOSITE Data with Climate Model MIROC. J. Climate, 32, /10.1175/JCLI-D-18-0195.1.				

4.10.2 ECV Product: Sea ice thickness

Name	Sea ice thickness										
Definition			e betw	veen sea ice s	surface and sea ice underside of the ice-covered fraction of an						
Unit	m										
Note	Sea-ice thickness is together with the sea-ice area derived from the sea-ice concentration the key ingredient to compute the sea-ice volume and mass. Long-term sea-ice volume and mass changes are considered as the integral response of climate change exerted on the polar regions. Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km	Wetrie	G	1	Required to resolve small scale impacts of deformation events on sea-ice thickness distribution for more accurate estimation of dynamics on mass balance Enables to resolve thickness distribution approaching floe scale for improved ice mass flux						
					Needed to obtain enhanced ice-type specific ice thickness information and more accurate estimates of ice production.						
			В	25 distribution 25 mean & median	Required for the analysis of regional sea-ice thickness distributions Needed to further develop and improve GCMs and to improve regional climate analyses Needed to refine hemispheric trend analyses and to analyze basin-wide / regional sea-ice thickness and mass trends Required for the evaluation of the next generation of CMIP6 GCMs						
			T	50	Minimum useful horizontal resolution to compute hemispheric trends in sea-ice thickness and mass and to evaluate GCMs / CMIP6						
Vertical			G								
Resolution			В								
Temporal Resolution	day		T G	daily year- round	To resolve ice production in polynyas and during early freeze- up To resolve the impact of dynamic processes on the sea-ice thickness distribution To resolve snow-ice formation						
				В	weekly year-round	To better monitor the impact of longer-lasting weather conditions on sea-ice formation and melt.					
					monthly year-round	To better monitor the full seasonal cycle of sea-ice thickness					
			Т	monthly wintertime	Minimum temporal resolution required to adequately monitor the winter-time sea-ice thickness and mass increase						
Timeliness	day		G	1	Operational monitoring with climate indicators, update of reanalyses						
	days		В	7	Update of monthly climate indicators						
			Т	30							
Required Measurement Uncertainty (2-sigma)	% SIC m		G	0.05	To improve monitoring of thin ice areas and associated heat fluxes To enhance sea-ice production estimation To monitor diurnal changes in sea-ice thickness during growth and melt						
		В	0.1	To monitor regional- and large-scale sea-ice thickness changes in the Arctic towards the end of the growing season and in the Antarctic.							
			Т	0.25	Minimum useful uncertainty to be able to monitor basin-wide sea-ice thickness changes at monthly scale.						
Stability	0		G								
	%/dec		В								
			Т								

Standards and References • Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.

4.10.3 ECV Product: Sea ice drift

Name	Sea ice drift										
Definition	Rate of m	ovement of s	ea ice	due to	winds, currents or other forces.						
Unit	km/day										
Note	1) Sea Ice drift is a 2D vector, expressed with two components along two orthogonal directions.										
	2) The un	certainty req	uirem	ents belo	ow are for both components (not the total velocity).						
	3) The un	certainty requ	uirem	ents belo	ow are for a reference displacement period of 24 hours.						
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal			G	1	Near-coast applications (e.g. Canadian Arctic Archipelago).						
Resolution	km		В	5	Regional analysis, deformations, volume fluxes through narrow						
				25	gates.						
					Trend analysis, sea-ice tracking, volume fluxes						
			Т	50	Limit for trend analysis, evaluation of global GCM simulations						
Vertical	N/A		G								
Resolution			В								
			T								
Temporal Resolution	day		G	<1	Sea-ice motion can change very rapidly with winds or internal forces						
			В	1 7							
			Т	30	Large-scale circulation patterns and trends						
Timeliness			G	1-2							
	day		В	7	Update of monthly climate indicators						
			Τ	30							
Required Measurement	km/day	see Note	G	0.25	Requires high-resolution imaging (e.g. SAR). For deriving deformation.						
Uncertainty	,		В	3							
(2-sigma)			Τ	10							
Stability			G								
	%/dec		В								
			Т								
Standards	• [avergne and	Kern,	et al. (2	2022). A New Structure for the Sea Ice Essential Climate						
and	/	/ariables of th	ne Glo	bal Clim	ate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.						
References	• [Dierking, W.,	et al.,	Estimat	ing statistical errors in retrievals of ice velocity and deformation						
	ŗ	parameters fr	om sa	itellite in	nages and buoy arrays, The Cryosphere, 14(9), 2999-3016,						
	2	2020, https://	/doi.o	rg/10.51	94/tc-14-2999-2020						

4.10.4 ECV Product: Sea ice age

Name	Sea ice age										
Definition		The age of an ice parcel is the time since its formation or since the last significant (e.g. summer)									
Unit	days										
Note	An ice parcel first-year ice (e.g. summe for each sum	, its age is le r season) it imer melt se o the neares	ess th becor ason	an 1 yea nes seco the ice p	ng season is in its first year of existence and can be defined as ar. When it survives the first exposure to significant melting ond-year ice (its age is between 1 and 2 years). This continues parcel survives. In other words, the age of an ice parcel is r with each exposure to significant melting (typically the						
	While in the Arctic, it has been common practice to use the date of the overall summer minimum extent for the reclassification of the sea ice, there are no well accepted definitions for the Southern Ocean and region-specific dates might be needed. Here we do not define any specific details what the definition of the significant melt is.										
	age informat salinity, surfa	The reclassification of sea ice into an older ice category at significant melt aims at linking the sea-ice age information to the physical properties of the ice, including its air bubbles content, density, salinity, surface roughness, etcAll these physical properties change drastically through melting and especially during the first summer melt.									
	ages within a age has been classes (age reported as a	Sea ice age can be reported as the representative/dominating age in an area or as the distribution of ages within an area. Sea ice age can be computed with different approaches. Traditionally, sea-ice age has been derived from either Lagrangian tracking techniques and presented as areas with year classes (age = 1, 2, 3, etc.) or from analysis of microwave emissivity and backscattering and reported as age categories (e.g. first-year ice, second year ice, multiyear ice). The latter retrieval method often refers to the product as sea-ice type. Age concentration products exist that report									
	Some distribu	ation of age	vvitiiii		quirements						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km	WICTIC	G	1	Needed to resolve spatial differences in age when refreezing						
Resolution			В	5 25	occurs between larger ice floes and plates, or in divergent icefields. Will capture details in the Canadian Archipelago. Needed to optimally resolve the age of narrow land-fast ice areas fringing Antarctica. Needed for better capturing regions dominated by broken old ice (like the Beaufort Gyre), and elongated filaments of certain age classes. Needed to resolve the age of larger-scale land-fast ice areas in Antarctica important for buttressing ice shelves. Reasonable capability in Canadian Archipelago, except for narrower straits. Regional analysis. General mapping of ice classes, used for climate monitoring e.g. trend analysis, climate index of old ice. Also, used as background information for ice thickness retrieval. Lack of						
			_	F.O.	resolution for smaller areas, such as in the Canadian Archipelago.						
Vertical			T G	50	Limit for trend analysis						
Resolution	N/A		В								
			T								
Temporal			G	<1							
Resolution	days		В	1 7	The edges between ice classes can move a lot during a day however the areal coverage of the >1year classes is assumed not to have large daily variability.						
			Т	30							
Timeliness			G	1-2	Operational monitoring with climate indicators						
	days		B T	30	Useful for input into monthly altimeter-based sea ice thickness estimates.						
Required Measurement Uncertainty	days		G	7	Age information as "time since its formation or since the last significant (e.g. summer) melt". We do report the age of the ice within the on-going freezing season.						
(2-sigma)			В	182	Age as year classes (1,2,3,). Requirement on accuracy is 182 days (half a year) because we do not report the age of the ice within the on-going freezing season.						
			Т	> 1 year	As a minimum, a meaningful sea-ice age product should separate ice into seasonal ice and perennial ice, with a probability of correct classification of 70%. The dominating ice						

			class is reported.
Stability	days	G	
		В	
		Τ	
Standards and References			22). A New Structure for the Sea Ice Essential Climate e Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.

4.10.5 ECV Product: Sea ice temperature

Name	Sea Ice Surface Temperature (IST)								
Definition		temperature	e of se	ea ice or	snow on sea ice, either a calibrated radiometric or				
Unit	Kelvin (K)								
Note	relevant com and others. I based on the requirements	The IST requirements below are based on several requirement/recommendation documents from relevant communities and institutions, e.g. WMO, GCOS, GMES, Copernicus/CMEMS, ESA CCI, NOAA, and others. Requirements for IST range widely in both in values and metric and the given values are based on these documents and expert judgments from the OSISAF High Latitude team. Uncertainty requirements are valid for automatically cloud screened day and night time IST data compared with surface temperature reference data of high quality, e.g. radiometric in situ observations.							
	1114	B.O. Audio	[4]		quirements				
I tem needed Horizontal	Unit km	Metric	[1] G	Value 1	Derivation, References and Standards GCOS, GMES, Copernicus/CMEMS				
Resolution	KIII		В	5	GCOS, GMES, Copernicus/CMEMS				
				10					
			Т	50	WMO				
Vertical Resolution	N/A		G	Skin Skin					
Resolution	IN/ A		B T	Skin					
Temporal			G	3	to capture diurnal cycle, GCOS, Copernicus/CMEMS				
Resolution	days			hours					
			В	1	GCOS, Copernicus/CMEMS				
Timeliness			T G	7 1-2	Can allow full coverage (cloud cover)				
Timeliness	days		В	1-∠ 7					
			T	30					
Required			G	1.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et				
Measurement Uncertainty	K		D	2.0	al., 2019				
(2-sigma)			В	3.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
(= signile)			Т	6.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
Stability			G	0.1	As defined in the GCOS LST ECV requirements				
			В	0.2	As defined in the CCOS LST ECV requirements				
Standards and References	Vari CLiC Arcc CME Joha Shy Bru: Con CME Con CME Cop Cop Rep Cop	dables of the C (2012) Obtic Sea Ice Notes (2016) annesen, T. aberg. Positic Seels, Copered (2017) annesen, Copered (2017) annesen, Copered (2017) annesen, Copered (2018) annesen, Copered (2016) Teorological SAF CDOPorg/sites/de	Gern,	al Clima tional neing Group no, L., L. rgne, Pper Polar Marine MS required MS Dashl Duchossion Pha (22832, Duchossion Pha (44170, Doe, M. Volms for I e output eline doc/106584 obal Obsitzation, 18) Programs of Programs of Pha (106584)	sois, G., P. Strobl, V. Toumazou (Eds.) User Requirements for a se 2 Report - High-level mission requirements. JRC Technical 2018. Vinstrup and J. L. Høyer (2019) Review of state-of-the-art ce Surface Temperature retrieval algorithms - Including product requirements and software specification, Product cument, version 2.3. EUMETSAT document Reference Number:				

4.10.6 ECV Product: Sea ice surface albedo

Name	Sea ice surf	ace albedo)						
Definition	Broadband s			e albedo					
Unit	1								
Note	Albedo is a measure of how much solar radiation incident at a surface of known area is reflected back; it is the ratio between incoming and outgoing surface short-wave radiation. The value range is 0 to 1. The surface albedo of sea ice covers almost the entire range with very thin ice such as dark nilas having an albedo of ~ 0.1 and sea ice with a fresh snow cover having an albedo of ~0.9. The albedo of bare (snow-free) sea ice depends strongly on sea-ice age. Predominantly in the Arctic, during summer, melt water forms complex patterns of melt ponds on top of the sea ice that reduce the albedo considerably - depending on areal fraction and depth of the ponds and on ice age. Thus, not only the surface albedo, but also its partition into surface types (openings in the sea ice cover, melt ponds, bare ice, snow, etc) is critical to observe. Through its relation to surface melt processes, albedo observations are key to improving the satellite retrieval of other sea-ice variables, such as sea-ice concentration. Albedo is the key parameter describing the amount of solar energy available for ice melt and in-ice and under-ice primary production.								
	ground truth	ing and eva	luatio	n of sea	d the difficulty to obtain adequate in-situ observations for ice surface albedo climate data records determine that ECV from those of the terrestrial albedo.				
					quirements				
Horizontal Resolution	Unit km	Metric	[1] G	Value 1	Derivation, References and Standards Needed for mapping of larger flooded ice areas in the Arctic during summer (e.g. in river estuaries, or fjords) Improved mapping of spring / summer melt progress in the Arctic as a function of ice age.				
			В	5	Needed to reliably monitor albedo evolution of larger thin ice areas associated with polynyas. Needed to monitor albedo evolution in narrow passages such as the Canadian Archipelago or around the Antarctic Peninsula				
			T	10	Needed to discriminate adequately between the albedo of ice of different age during melt and re-freeze in the Arctic. Needed to reliably detect surface melt / refreeze event-induced changes in snow surface albedo in the Antarctic				
Vertical	N/A		G	50	Minimum horizontal resolution to derive basin-wide trends in				
Resolution			B T		albedo and solar energy input				
Temporal Resolution	days		G B	3 hours	Required for an optimal quantification of surface albedo (and hence solar energy input) under highly variable cloud / surface illumination (changes surface topography) / surface conditions (fresh snow and pond drainage change surface albedo at ~				
			Т	1	hourly scale) Required to accurately quantify the seasonal cycle and cumulative amount of surface available solar radiation Enables us to take into account the impact of melt-pond surface area changes and snowfall on diurnal variations in albedo and surface available solar radiation				
Timeliness	days		G	7	Minimum temporal resolution required to derive basin-scale changes in seasonal surface available solar radiation input, melt onset, and commence of freeze-up as well as to estimate onset of under-ice primary production.				
			В	1-2					
Doguired			T	7 30					
Required Measurement Uncertainty (2-sigma)			G B	0.01	Required to discriminate between new ice and open water and to detect submerged ice Needed to accurately observe sub-grid scale changes in ice surface conditions				
			Т	0.05	Required to reliably monitor changes in snow properties: fresh - old - melting and to be able to distinguish between melting snow and bare ice Needed to differentiate between melt ponds on ice of different age and to identify melt-pond freeze-up				
Stability	1/decade		G	0.1	Minimum measurement uncertainty to discriminate between ice / no ice or cold snow-covered / bare ice or to identify melt ponds				
			B T						
Standards	• Lav	ergne and K	-	et al. (20	022). A New Structure for the Sea Ice Essential Climate				
and		_			te Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.				

References

- Perovich, D. K., et al., Anatomy of a late spring snowfall on sea ice, Geophys. Res. Lett., 44(6), 2802-2809, 2017, https://doi.org/10.1002/2016GL071470

 Ardyna, M. and K. R. Arrigo, Phytoplankton dynamics in a changing Arctic Ocean, Nat. Climate Change, 10(10), 892-903, 2020, https://doi.org/10.1038/s41558-020-0905-y

4.10.7 ECV Product: Snow depth on sea ice

	Snow depth on sea ice												
Name Definition				now cover on	top of the sea ice								
Unit	m vertica	exterit 0	tile S	now cover on	top of the sea ice								
Note	Snow has a very efficient reduces the time ice me budget of the Snow has the snow has the snow has a very efficient reduces the very efficient reduces the snow has a very efficient reduces the very efficient	Snow has a heat conductivity which is an order of magnitude smaller than that of sea ice. It is hence very efficient at isolating sea ice from the atmosphere already at a depth of a few centimeters. Snow reduces the ocean-atmosphere heat flux. Thick snow retards winter-time ice growth and summer-time ice melt onset. Snow therefore has a profound impact on the overall heat and sea-ice mass budget of the polar oceans. Snow has the highest short-wave albedo of the snow-sea ice-system. Snow-covered sea ice can reflect about 25% more solar radiation than any kind of bare sea ice. Snowfall during melt-onset can											
	_	delay sea-ice melt for several days to a few weeks due to the surface albedo change imposed.											
	Snow depth observation ice during v solve these observation situ observa	Snow is a critically required parameter for sea-ice thickness retrieval using altimetry. Snow depth on sea ice has been retrieved using multi-frequency satellite microwave radiometer observations for decades. While the retrieval is mature and accurate over undeformed seasonal sea ice during winter conditions, deformation, melt conditions and multiyear ice pose challenges. To solve these is currently explored using innovative combinations of satellite microwave radiometer observations using even more frequencies than so far with radar and laser altimeter observations, in situ observations from buoys, airborne surveys and specifically developed snow models informed with meteorological data from numerical modeling.											
I have produced	Limia	Matria	[4]		rements								
I tem needed Horizontal	Unit km	Metric	[1] G	Value 1	Derivation, References and Standards								
Resolution	KIII		В	25 distribution 50	Minimum horizontal resolution to derive basin-wide trends Minimum spatial resolution to support sea-ice thickness retrieval from altimetry								
Vertical Resolution	N/A		G B										
			T										
Temporal Resolution			G	daily year- round	Needed for highly accurate year-round daily sea-ice thickness retrieval using satellite altimetry Required to define begin and end of spring snow melt on sea ice Needed to improve estimates of sea-ice melt progress or slow down Would enable estimation of the amount of snow-to-ice conversion related to flooding - refreeze events								
			В	weekly year-round	Needed for year-round sea-ice thickness retrieval using satellite altimetry at weekly time scale Required to enhance evaluation of ocean-atmosphere heat flux estimates during the shoulder seasons and studies								
			T	monthly year-round	about sea-ice melt and freeze onset Required for year-round sea-ice thickness retrieval using satellite altimetry								
Timeliness	days		G	monthly, wintertime	Minimum temporal resolution to support sea-ice thickness retrieval using satellite altimetry								
			В	1-2									
			T	7									
Required			G	30									
Measurement Uncertainty (2-sigma)	m		B T	0.01 0.05									
Stability	m/decade		G	0.1	Minimum requirement to ensure a sea-ice thickness retrieval uncertainty < 0.5 m and < 0.8 m using radar and laser altimetry, respectively.								
			В										
Ctondondo		Vorces	T	ot al. (2002	A Now Structure for the Cas Las Facultal Olivert								
Standards and	• La	vergne ar	ia Keri	n, et al. (2022). A New Structure for the Sea Ice Essential Climate								

References

- Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.
- Kwok, R., and G. F. Cunningham, ICESat over Arctic sea ice: Estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, 2008, https://doi.org/10.1029/2008JC004753
- Giles, K. A., et al., Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002, Rem. Sens. Environ., 111(2-3), 182-194, 2007, https://doi.org/10.1016/j.rse.2007.02.037

5. BIOGEOCHEMISTRY

5.1 Oxygen

5.1.1 ECV Product: Dissolved oxygen concentration

Name	Dissolv	ed oxygen c	once	ntration							
Definition					(2) in the water column						
Unit	μmol kg ⁻¹										
Note	expresso analysis	This EOV/ECV is a measurement of sub-surface dissolved oxygen (O ₂) concentration in the ocean, expressed in units of µmol kg ⁻¹ . Data on dissolved oxygen is obtained by both discrete (chemical analysis) and continuous (sensor measurements) sampling performed on a number of observing platforms (ship-based, fixed-point, autonomous).									
Requirements	ts										
Item needed	Unit	Unit Metric [1] Value Derivation, References and Standards									
Horizontal Resolution	km		G	300 Coastal: 1-100	For global coverage, spatial resolution refers to distance between transects, not between sampling stations.						
			В								
			Т	2000 Coastal: 300							
Vertical			G								
Resolution			В								
			Τ								
Temporal			G	Monthly							
Resolution			В								
			Τ	decadal							
Timeliness	Month		G	6							
			В								
			Τ	12							
Required	μmol		G	0.5							
Measurement	kg⁻¹		В								
Uncertainty (2-sigma)			Т	2							
Stability			G								
			В								
			Τ								
Standards and References					s scales and magnitude of signal of phenomena to observe. See ls and references (www.goosocean.org/eov).						

5.2 Nutrients

5.2.1 ECV Product: Silicate

Name	Silicate								
Definition	Concentration of Si(OH) ₄ in the water column								
Unit	μmol kg ⁻¹								
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.								
Item needed	Unit	Metric	[1]	Value	uirements Derivation, References and Standards				
Horizontal Resolution	Horizontal km		G	1000 Coastal: 0.1-100	Derivation, References and Standards				
			В						
			T	2000 Coastal: 100					
Vertical			G						
Resolution			В						
			Т						
Temporal Resolution			G	seasonal Coastal: monthly					
			В						
			Τ	decadal					
Timeliness	month		G	6					
			В						
	04		T	12					
Required Measurement	%		G B	1					
Uncertainty			Т	3					
(2-sigma)			'	3					
Stability									
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov).								

5.2.2 ECV Product: Phosphate

Name	Phosphate								
Definition	Concentration of PO ₄ in the water column								
Unit	μmol kg ⁻¹								
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.								
			F 4 7		quirements				
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	km		G	1000 Coastal: 0.1-100					
			В						
			Т	2000 Coastal: 100					
Vertical			G						
Resolution			В						
			Т						
Temporal Resolution			G	seasonal Coastal: monthly					
Therefore			T	decadal					
Timeliness	month		G	6					
			B T	12					
Required	%		G	1					
Measurement	/0		В	1					
Uncertainty (2-sigma)			T	3					
Stability									
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov).								

5.2.3 ECV Product: Nitrate

Name	Nitrate									
Definition	Concentration of NO ₃ in the water column									
Unit	µmol kg ⁻¹									
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.									
					quirements					
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	1000 Coastal: 0.1-100						
			В							
			Т	2000 Coastal: 100						
Vertical			G							
Resolution			В							
			T							
Temporal Resolution			G	seasonal Coastal: monthly						
			В							
			T	decadal						
Timeliness	month	า	G	6						
			В	10						
Demined	0,		T	12						
Required Measurement	%		G B	1						
Uncertainty (2-sigma)			Т	3						
Stability										
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov).									

5.3 Ocean inorganic carbon

5.3.1 ECV Product: Total alkalinity (TA)

Name	Total alkalinity (TA)									
Definition	total concentration of alkaline substances									
Unit	µmol kg ⁻¹									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	1000 Coastal: 100						
			В							
			Т	2000 Coastal: 1000						
Vertical			G							
Resolution			В							
			Τ							
Temporal			G	seasonal						
Resolution			В	-11 - 1						
Timeliness	Months		T G	decadal 6						
Timeliness	IVIOLITIES		В	O						
			T	12						
Required	µmol kg⁻¹		G	2						
Measurement	. 3		В							
Uncertainty			Т	2						
(2-sigma)				2						
Stability			G							
			В							
Ctondordo	Doguiros	nto boood on aba	T	siatia agalas s	nd magnitude of signal of phonomone to chase a Cas					
Standards and					nd magnitude of signal of phenomena to observe. See ferences (www.goosocean.org/eov).					
References	201 36	Journal of July	. ioi u	otalis and for	or or loos (mm. goodoccan.org/cov).					
	Additional requirements based on the Global Ocean Data Assimilation Project (GLODAP; www.glodap.info); for pH based on the Global Ocean Acidification Observing Network (GOA-ON) Implementation Strategy (http://goa-on.org/about/strategy.php); for pCO ₂ from the Surface Ocean CO ₂ Atlas (SOCAT; www.socat.info).									

5.3.2 Dissolved inorganic carbon (DIC)

Name	Dissolved inorganic carbon (DIC)									
Definition	Sum of dissolved inorganic carbon species (CO ₂ , HCO ⁻ , CO3 ²⁻) in water									
Unit	μmol kg ⁻¹									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	1000 Coastal: 100						
			В							
			T	2000 Coastal: 1000						
Vertical			G							
Resolution			В							
			Т							
Temporal	emporal		G	seasonal						
Resolution			В							
		T	decadal							
Timeliness	Months		G	6						
		В								
			T	12						
Required	μmol		G	2						
Measurement	kg ⁻¹		В							
Uncertainty (2-sigma)			Т	2						
Stability										
Standards and References	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov). Additional requirements based on the Global Ocean Data Assimilation Project (GLODAP; www.glodap.info); for pH based on the Global Ocean Acidification Observing Network (GOA-ON) Implementation Strategy (http://goa-on.org/about/strategy.php); for pCO ₂ from the Surface Ocean CO ₂ Atlas (SOCAT; www.socat.info).									

5.3.3 ECV Product: pCO₂

Name	pCO ₂									
Definition	surface ocean partial pressure of CO ₂									
Unit	μatm									
Note										
	Requirements									
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	100						
Resolution			В							
			Τ	1000						
				Coastal:						
				<1000						
Vertical			G							
Resolution			В							
			Τ							
Temporal			G	monthly						
Resolution			В							
			Т	decadal						
Timeliness	Months		G	6						
			В							
			Τ	12						
Required	µatm		G	2						
Measurement			В							
Uncertainty			Τ	2						
(2-sigma)			G							
Stability			В							
			Т							
Standards	Peguiremo	nte hasad on cha		ristic scales a	nd magnitude of signal of phenomena to observe. See					
and					rerences (www.goosocean.org/eov).					
References	inc LOV Sp	Comedion ones	101 0	ctalls and let	or or local (www.goodoccarr.org/cov).					
Acidi cilocs	Additional	requirements bas	sed or	the Global C	Ocean Data Assimilation Project					
	(GLODAP; www.glodap.info); for pH based on the Global Ocean Acidification Observing Network									
	(GOA-ON) Implementation Strategy (http://goa-on.org/about/strategy.php); for p CO ₂ from the Surface Ocean CO ₂ Atlas (SOCAT; www.socat.info).									

5.4 Transient tracers

5.4.1 ECV Product: 14C

Name	14C										
Definition	Ratio of sample to reference value ($\Delta 14$) in the water column										
Unit	‰	·		,	,						
Note											
				Re	equirements						
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km		G	2000: Regional 200: Deep water formation areas							
			B T	2000							
Vertical			G	2000							
Resolution			В								
			T								
Temporal Resolution			G	10: Regional 2: Deep water formation areas							
			В								
			Т	10							
Timeliness	year		G	1							
	J		В								
			Т	2							
Required	‰		G	0.4							
Measurem			В								
ent			Т								
Uncertaint y (2- sigma)											
Stability	y year		G	10: Regional 1: Deep water formation areas							
			В								
			Т	10							
Standards and References					cales and magnitude of signal of phenomena to observe. calls and references (www.goosocean.org/eov).						

5.4.2 ECV Product: SF₆

Name	SF ₆								
Definition	Conce	entratio	n of SF	gas in the wa	iter column				
Unit	fmol	kg ⁻¹							
Note									
					Requirements				
Item	Uni	Metri	[1]	Value	Derivation, References and Standards				
needed	t	С							
Horizontal Resolution	km		G	2000: Regional 200: Deep water formation areas					
			В	0000					
			T	2000					
Vertical			G						
Resolution			В						
Tomanaral	1400		T G	10:					
Temporal Resolution	yea r	G	Regional 2: Deep water formation areas						
			В						
			T	10					
Timeliness	ye		G	1					
	ar		В						
			Т	2					
Required	‰		G	0.4					
Measurem			В						
ent Uncertaint y (2- sigma)			Т						
Stability	yea r		G B	10: Regional 1: Deep water formation areas					
			T	10					
Standards and References					stic scales and magnitude of signal of phenomena to observe. or details and references (www.goosocean.org/eov).				

5.4.3 ECV Product: CFC-11

Name	CFC-11									
Definition			of CFC-	11 gas in the	water column					
Unit	pmol k	.g ⁻¹								
Note										
					Requirements					
I tem needed	Unit	Metr ic	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	2000: Regional 200: Deep water formation areas						
			В							
			T	2000						
Vertical			G							
Resolution			В							
			T	10						
Temporal Resolution			G	10: Regional 2: Deep water formation areas						
			В							
			Т	10						
Timeliness	mont		G	6						
	h		В							
			T	6						
Required	‰		G	1						
Measurem			В							
ent Uncertaint y (2- sigma)			Т							
Stability	year		G	10: Regional 1: Deep water formation areas						
			В							
			Т	10						
Standards and References					ic scales and magnitude of signal of phenomena to observe. details and references (www.goosocean.org/eov).					

5.4.4 ECV Product: CFC-12

Name	CFC-12									
Definition	Concer	ntration of	CFC-12	2 gas in the wat	er column					
Unit	pmol k	g ⁻¹								
Note										
				Re	equirements					
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	2000: Regional 200: Deep water formation areas						
			В							
			Т	2000						
Vertical			G							
Resolution			В							
			Т							
Temporal Resolution	year		G	10: Regional 2: Deep water formation areas						
			В							
			T	10						
Timeliness	mon		G	6						
	th		В							
			Т	6						
Required	‰		G	1						
Measurem			В							
ent Uncertaint y (2- sigma)			Т							
Stability	year		G	10: Regional 1: Deep water formation areas						
			В							
			T	10						
Standards and References	Require See the	ements ba e EOV Spe	sed on cification	characteristic so on Sheet for det	cales and magnitude of signal of phenomena to observe. ails and references (www.goosocean.org/eov).					

5.5 Ocean nitrous oxide N₂O

5.5.1 ECV Product: Nitrous oxide N₂O

Name	Snow-water equivalent									
Definition	Amount	of N2O produc	ced pe	er area per year						
Unit	µmol m⁻	² yr ⁻¹								
Note										
				Requirem	nents					
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km		G	<2000 Coastal: <50						
				0						
			В							
			Т	2000						
Vertical			G							
Resolution			В							
			Т							
Temporal Resolution			G	Seasonal Coastal: weekly to						
			В	monthly						
			T	Decadal						
Timeliness	years		G	1						
Tittleffiless	years		В	1						
			Т	2						
Required			G	<1						
Measuremen			В							
t Uncertainty			T	5						
(2-sigma)			'	3						
Stability	%		G							
			В							
			Т							
Standards and					he phenomena which are observed using N2O ces see the Nitrous Oxide EOV Specification Sheet					
References	(www.go		eov),		SCOR WG 143 (https://scor-int.org/group/143/) and					
	(https://	www.goosoce	ean.org	g/index.php?optio	on=com_oe&task=viewDocumentRecord&docID=20428).					

5.5.2 ECV Product: N₂O air-sea flux

Name	Snow-v	vater equiva	alent										
Definition	Concentration of N₂O gas in the water column												
Unit	nmol kg ⁻¹												
Note	Nitrous oxide Nitrous oxide (N2O) is an atmospheric trace gas which is measured in the water column												
	of all major ocean basins at concentrations spanning three orders of magnitude. The ocean is a major												
	source (around 25%) of N ₂ O gas to the atmosphere.												
		Requirements											
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards								
Horizontal	km		G	<2000									
Resolution				Coastal: <5									
			D	00									
			B T	2000									
Mantinal				2000									
Vertical Resolution			G										
Resolution			В										
Tomporal			G	Seasonal									
Temporal Resolution			В	Seasuriai									
Resolution			Т	Seasonal									
			'	Coastal:									
				weekly to									
				monthly									
Timeliness	years		G	1									
	,		В										
			T	2									
Required	%		G	<1									
Measuremen			В										
t Uncertainty			T	5									
(2-sigma)													
Stability			G										
			В										
			T										
Standards			charact	eristic scales of	the phenomena which are observed using N ₂ O								
and	measure		roforc	ooo ooo tha Niiti	rous Ovida FOV Specification Sheet								
References					rous Oxide EOV Specification Sheet m SCOR WG 143 (https://scor-int.org/group/143/) and								
		S Report No		סטווכמנוטווא וו טו	in Scok we 143 (https://scor-int.org/group/143/) and								
				ı/index_nhn?ont	tion=com_oe&task=viewDocumentRecord&docID=20428).								
	(iittp3.77	******.goodoc	20011.01	, mack.pmp:opi	don com_coatable viewboodinentitocordadocib=20420).								

5.6 Ocean colour

5.6.1 ECV Product: Water leaving radiance

Name	Water leaving radiance											
Definition	Amount of light emanating from within the ocean											
Unit	μg I-1											
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.											
	Requirements											
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km		G	4								
Resolution			В									
			T	4								
Vertical			G									
Resolution			В									
			T	-								
Temporal	day		G	1								
Resolution			В	-								
Theresides			T	7								
Timeliness			G									
			В									
Demoised	%		T G	20								
Required Measurement	%		В	30								
Uncertainty			_	20								
(2-sigma)			Т	30								
Stability	%		G	3								
Stubility	70		В	3								
			T	3								
Standards	For more	details and re		_	the Ocean colour EOV Specification Sheet							
and		osocean.org/e		.555 500	and detail series. Lot opposition officer							
References	(/ ·									

5.6.2 ECV Product: Water leaving radiance

Name	Water leaving radiance										
Definition	Amount of light emanating from within the ocean										
Unit											
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	4							
Resolution			В								
			T	4							
Vertical			G								
Resolution			В								
			T								
Temporal	day		G	1							
Resolution			В								
			T	1							
Timeliness			G								
			В								
			T	_							
Required	%		G	5	Uncertainty specified for blue and green wavelengths.						
Measurement			В	_							
Uncertainty (2-sigma)			T	5	Uncertainty specified for blue and green wavelengths.						
Stability	%		G	0.5							
			В								
			Τ	0.5							
Standards	For more	details and re	eferen	ces see	the Ocean colour EOV Specification Sheet						
and	(www.go	osocean.org/e	eov).								
References											

6. BIOSPHERE

6.1 Plankton

6.1.1 ECV Product: Zooplankton diversity

Name	Zooplankton o	diversity									
Definition	Number of species, functional traits, molecular biology groups (Operational Taxonomic Unit/OUT, other) per unit seawater volume or unit sea surface area, or unit benthos area										
Unit	[Number of Species per unit volume or area, [Number of traits per unit volume or area], [Number of molecular biology groups per unit volume or area]										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km		G	100 offshore 0.1 nearshore							
			В	1 offshore 0.1 nearshore							
			T	2500 offshore 0.1 nearshore							
Vertical	m		G	10 nominal	Depends on method of collection: discrete						
Resolution			В	10 nominal	samples, vertical imaging profiles, net tows						
			T	surface	(oblique vs open/closing), or continuous tow recorder/imaging						
Temporal Resolution	month		G	1	Phenology of zooplankton is critical for food web dynamics, and recruitment success for whales, birds, turtles, fish, and invertebrate success						
			В	3							
			Т	12							
Timeliness	year		G	1							
			В								
			Т	2							
Required Measurement Uncertainty	%, count, concentration, weight		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight, carbon, nitrogen, protein content)						
(2-sigma)	(biomass)		В		J						
			Т	5							
Stability			G								
			В								
			T								
Standards and References					ore details and references _oe&task=viewDocumentRecord&docID=17509)						

6.1.2 ECV Product: Zooplankton biomass

Name	Zooplankto	on biomass										
Definition	Weight of zo	Weight of zooplankton by volume										
Unit	mg/l											
Note	can be dry weight or wet weight											
	Requirements											
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km		G	100								
Resolution			В									
			Τ	2500								
Vertical	m		G	10								
Resolution			В									
			Т	surface								
Temporal	month		G	1								
Resolution			В									
			Τ	12								
Timeliness	year		G	1								
			В									
			Т	2								
Required	%		G									
Measurement			В									
Uncertainty			Т	5								
(2-sigma)												
Stability			G									
			В									
			T									
Standards		•			nore details and references							
and	(https://ww	w.goosocean.d	org/in	dex.php?option=co	m_oe&task=viewDocumentRecord&docID=17509)							
References												

6.1.3 ECV Product: Phytoplankton diversity

Name	Phytoplank	ton diversity									
Definition	Number of species per unit sample, number and concentration of pigment types per unit sample										
Unit	Per unit volu	ume or unit su	rface a	rea							
Note	Phytoplankton are the foundation of near-surface food webs and the non-chemosynthetic support for deep ocean foodwebs through vertical fluxes of particulate organic matter. In addition to their biomass and diversity, measures of primary production are also important.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	100 offshore							
Resolution			-	0.1 nearshore							
			В	1 offshore 0.1 nearshore							
			Т	2000 offshore							
			Ċ	1 nearshore							
Vertical			G	10 nominal	Depends on method of collection: discrete						
Resolution			В	10 nominal	samples, vertical imaging profiles, net tows						
			Т	surface	(oblique vs open/closing), or continuous tow						
					recorder/imaging						
Temporal	monthly		G	weekly-	Phenology of phytoplankton is critical for food						
Resolution	monthly		Ü	monthly	web dynamics and recruitment success for						
					whales, birds, turtles, fish, and invertebrate						
					success						
			В	3							
			T	1							
Timeliness			G								
			В								
Doguirod	%		T G		Depending on observation. Townsmis unit						
Required Measuremen	70		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight,						
t Uncertainty					carbon, nitrogen, protein content)						
(2-sigma)			В		The state of the s						
			Т	5							
Stability			G								
			В								
			Т								
Standards	• Fiel	d methods fou	ndation	al reference for o	perational oceanography: Strickland, J.D., &						
and					of seawater analysis. Fisheries Research Board of						
References		•			more recent publications for specific methods)						
					he Ocean Colour EOV/ECV						
					details and references						
					otion=com_oe&task=viewDocumentRecord&docID						
		7507)	COOCAII	.o.g/maox.pmp:op	ss.n_ocatask viewboodinentitecordadocib						
	-11										

6.1.4 ECV Product: Chlorophyll-a concentration

Name	Chlorophyl	I-a concentra	tion								
Definition	Concentration	on of chlorophy	/II-a pig	ment in the surfa	ce water						
Unit	μg I-1										
Note											
	Requirements										
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km		G	4							
Resolution			В								
			T								
Vertical			G								
Resolution			В								
			Т								
Temporal			G	weekly							
Resolution			В								
			T	decadal							
Timeliness			G								
			В								
			T								
Required	%		G	30							
Measurement			В								
Uncertainty			Т	30							
(2-sigma)	07		0	0							
Stability	%		G	3							
			В	3							
Ctondordo	Soo the FO	V Chasification		~	nd reference						
Standards				for more details a							
and	(Https://ww	w.goosocean.c	i g/iride	ex.prip?option=cor	m_oe&task=viewDocumentRecord&docID=17507)						
References											

6.1.5 ECV Product: Phytoplankton biomass

Name	Phytoplankton biomass									
Definition	Weight of ph	ytoplankton b	y volui	me						
Unit	mg/m ³									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km		G	100						
Resolution			В							
			Т	2000						
Vertical			G							
Resolution			В							
			Т							
Temporal			G	Weekly-						
Resolution				seasonal						
			В	ala a a ala l						
Timediana			T G	decadal						
Timeliness										
			B T							
Required	%		G							
Measurement	/0		В							
Uncertainty			T	5						
(2-sigma)			'	3						
Stability			G							
			В							
			Т							
Standards	See the	e EOV Specifica	ation S	sheet for more deta	ails and references					
and					m_oe&task=viewDocumentRecord&docID=17507)					
References			-							

6.2 Marine habitat properties

6.2.1 Mangrove cover and composition

Name	Mangrove cover and composition										
Definition											
Unit	Extent of mangroves and species types in coastal environments (percent or ha and number of species per area). Extent measured in quadrats (e.g. 10x10m), or by pixels (e.g. 30x30m)										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	m²	Pixel/point in	G	30x30							
Resolution		space	В								
			Т	50x50							
Vertical			G								
Resolution			В								
			T								
Temporal	Month	Point in time	G	12							
Resolution			В								
		5	T	12							
Timeliness	Month	Point in time	G	6							
			В	10							
Demoison d	0	Damasant	T	12							
Required	Areal	Percent	G	10							
Measurement Uncertainty	extent		B T	20							
(2-sigma)			'	20							
Stability	Percent		G	10							
- Julianity	cover		В	. 0							
	33.3.		T	50							
Standards	• Re	guirements and a			eld based and satellite mapping approaches. For in						
and		a collection for m									
References	see http	s://www.daf.qld	.gov.a	u/data/asset	s/pdf_file/0006/63339/Data-collection-						
					ations/pdf_files/WPapers/WP86CIFOR.pdf						
	• Se	e the EOV Specif	ication	Sheet for more	e details and references						
	(http://goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=17514)										

6.2.2 Seagrass cover (areal extent)

Name	Seagrass cover (areal extent)										
Definition	Areal exter supporting		sical	habitat (shallov	v sediment shelf with adequate water quality)						
Unit	km ²										
Note	Seagrass areal extent is typically estimated by remote sensing, including satellite, photography from aircraft, and for smaller areas by Unoccupied Aerial vehicle (UAV), i.e., drone. Various methods of image post-processing have been used to convert imagery to seagrass habitat extent.										
		Requirements									
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	m		G	30	Muller-Karger et al. 2018						
Resolution			В								
			T	250	Muller-Karger et al. 2018						
Vertical	NA		G								
Resolution			В								
_			T	4 1	M II I I 0040						
Temporal Resolution	year		G	1 week	Muller-Karger et al. 2018						
Resolution			В	1 4000							
Timeliness			T G	1 year							
Timeliness			В								
			T								
Required	%		G								
Measurement			В								
Uncertainty			Т	10	Duarte 2002						
(2-sigma)											
Stability			G								
			В								
Standards	• Regui	romants based a	n cho	ractoristic scale	as and magnitude of signal of phonomona to sheep a						
and					es and magnitude of signal of phenomena to observe. details and references						
References											
TOTOL OFFICES	(http://goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=17513)										

6.2.3 Macroalgal canopy cover and composition

Name	Macroalgal canopy cover and composition									
Definition	Abundance	of layered macr	oalga	I stands in mar	ine coastal environments					
Unit	percent or number of individuals/area									
Note	Percent cover measured within quadrats (e.g., 0.5 x 0.5 m) or transects (e.g., 50 x 5 m). For large									
	macroalgae such as kelps, abundance can be measured as number of individuals per area.									
		1		Requiremen						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	m ²	point in space	G	0.25						
Resolution			В	1						
			Т	250						
Vertical	m	linear extent	G	1						
Resolution			В	5						
			Т	10						
Temporal	Month	point in time	G	1						
Resolution			В	3						
			Т	12						
Timeliness	Month	point in time	G	4						
			В	6						
			Т	12						
Required	Percent		G	10						
Measurement	cover		В	20						
Uncertainty			Т	30						
(2-sigma)										
Chability	Donoont		_	20						
Stability	Percent		G B	30						
	cover		_							
Ctondordo		ho FOV Choolifica	T	50	dataile and references					
Standards and					details and references be&task=viewDocumentRecord&docID=17515)					
References	(Http://got	osocean.org/mae	x.prip	reoption=com_c	Deatask - view Document Record addoct D = 1/515)					
References										

6.2.4 Hard coral cover and composition

Name	Hard coral cover and composition								
Definition		er of hard cora	I. For c	omposition,	this is broken down by taxonomic or functional groups.				
Unit	%								
Note				Require	monts				
Item	Unit	Metric	[1]	Value	Derivation, References and Standards				
needed									
Horizontal Resolution	km		G	10-100	For resolution of climate impacts, down to 10 km would be ideal; but will require development of remote sensing tools that can distinguish coral cover				
			В						
			Т	1000	Currently global coral data is analyzed at country levels (100s to 1000s of km)				
Vertical	m		G	10	for resolution of climate impacts, stratification in 10 m				
Resolution			В		would be ideal				
			Т	*	single layer, global coral data is summarized in a single				
Temporal	Year		G	1	annual data ideal				
Resolution			В						
			Т	5-10	data gaps results in 5-10 year gaps/bins for global				
Timeliness	Year	Year	G	0.25	Establishment of open access integrated regional datasets would allow sub-annual access to data				
			В	2					
			Т	5	Current practice requires high-effort compilations				
Required Measureme	%		G						
nt Uncertainty			В						
(2-sigma)			Т	5					
Stability			G B						
			Т						
Standards and					. (1997). Survey Manual for Tropical Marine Resources. Marine Science.				
References	• GCRMI (ICRI).	N (2018a). GCF	RMN Im	nplementatio	on and Governance Plan. International Coral Reef Initiative				
	• GCRMI	N (2018b). GCF	RMN Te	chnical Note	e. International Coral Reef Initiative (ICRI).				
	Fletcher P, (Jones A, Kir Tun K and V								
	Manag	jement. Front. I	Mar. So	ci. 6:580. da	oi: 10.3389/fmars.2019.00580				
					re details and references on=com_oe&task=viewDocumentRecord&docID=17512)				

A3. Terrestrial ECVs

7. HYDROLOGY

7.1 Groundwater

7.1.1 ECV Product: Groundwater Storage Change

Name	Groundwater Storage Change								
Definition		The volumetric loss or gain of groundwater between two times period							
Unit	km³/yea	km³/year or mm/year							
Note	Ground water storage change is monitored at large spatial scales by satellite gravimetry. To isolate groundwater storage change from the total mass variations observed by satellite gravimetry, all other mass changes in the Earth system need to be subtracted by complementary observations or models.								
		,			ements				
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	km	Length/width of area that can be	G	≤ 100	depends on size of aquifer, hydrogeological characteristics, and type of application. 100 km is defined as a goal/target value by ref#1				
		resolved	В						
			Т	200-300	horizontal resolution of GRACE water storage data, depending on product, signal strength, geographical location and time scale (ref #1, #2, #3)				
Vertical	N/A		G						
Resolution			B T						
Temporal Resolution		time	G	Biweekly	Requirement for the analysis of the groundwater response to, e.g., recharge events or changes in (human) withdrawals				
			В	Monthly					
		Т	Seasonal	Requirement for assessing, e.g., the climatology of groundwater storage variations and long-term variations / trends					
Timeliness		time	G	Near- real time	Requirement for risk management (droughts), short-term forecasts				
			В	monthly	Requirement for, e.g., seasonal forecasts				
			Т	annually	Minimum requirement to assess long-term storage varations				
Required Measurement Uncertainty (2-sigma)	mm/yr Change in water storage in water equivalents (volume per area) between two time periods	G	1	Goal value to allow for a much larger number of aquifers or river basins of smaller size to be monitored than for threshold value (ref #1), or for detecting more subtle rates of groundwater storage change. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long-term trends), the required measurement uncertainties may vary. It should be noted that the measurement uncertainty based on satellite gravimetry varies largely and in a non-linear way with spatial resolution, i.e., it is given as 0.05, 1, 5, 50 mm/year for 400, 200, 150, 100 km spatial resolution (ref #1). Additional uncertainty is added by isolating groundwater storage from total mass changes observed by satellite gravimetry.					
			В	40					
		Т	10	Expert judgement, based on long-term groundwater trends as observed with GRACE for large aquifers (≥ 50000 km²) (ref #2, #4), given that these observations already provided valuable information on the status of large aquifers. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long-term trends), the required measurement uncertainties may vary.					
Stability	mm/yr		G	1	Based on subtle expected long-term groundwater trends in large aquifers				
			В						
			T	10	Based on expected long-term groundwater trends as observed with GRACE for large aquifers (≥ 50000 km²) (ref #2, #4)				
Standards and References	•	M., Ivins, E., Lo Science and Us	ongue ser Nee	vergne, L., Feds for Obse	Panet, I., Wouters, B., and the IUGG Expert Panel (2015): erving Global Mass Transport to Understand Global Change in Geophysics, 36, 743-772, 10.1007/s10712-015-9348-9.				

- #2 Frappart, F., and Ramillien, G. (2018): Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sensing, 10, 10.3390/rs10060829.
- #3 Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M. H. (2018): Emerging trends in global freshwater availability, Nature, 557, 650-+, 10.1038/s41586-018-0123-1.
- #4 Chen, J. L., Famiglietti, J. S., Scanlon, B. R., and Rodell, M. (2016): Groundwater Storage Changes: Present Status from GRACE Observations. Surveys in Geophysics, 37, 397-417, 10.1007/s10712-015-9332-4.

7.1.2 ECV Product: Groundwater Level

Name	Groundwater Level							
Definition		evel (depth or e bedrock	levatic	n) of the water	table, the upper surface of the saturated portion of the			
Unit	m							
Note					oring wells. The measurements are expressed in m (belowing on the reference system).			
				Requirer				
I tem needed Horizontal	Unit	Metric Density of	[1] G	Value Depends on	Derivation, References and Standards Expert judgment			
Resolution		wells	G	hydrogeology	Expert Judgment			
		(number of	В	Depends on	Expert judgment			
		wells/area)	Т	hydrogeology Minimum of	This is the horizontal resolution recommended by the			
			'	1 well per 100 km2	U.S. Geological Survey (USGS).			
Vertical	N/A		G					
Resolution			В					
Temporal		time	T G	Biweekly	Expert judgment			
Resolution		time	В	Monthly	Expert judgment			
			T	Seasonal (wet/dry)	Expert judgment			
Timeliness		time	G	Real-time	Expert judgment. When resources are available, a real-time monitoring network with telemetry can be set up, allowing the public to get data immediately. When quality checks are performed, international experience shows that data can be released in 2 or 3 days.			
			В	Twice per year	Expert judgment. International experience shows that when missions have to be carry out to measure groundwater levels, half a year is an adequate time span to go over all locations, measure the levels, come back to the office, perform data quality tests and upload the final data in the online database to make it available to the public through official channels.			
			Т	Annually	Timeliness is directly related to the use of technology to get the data (telemetry vs going to the field to collect the data).			
Required Measurement Uncertainty (2-sigma)			G	1 mm or less	Depending on the size and gradient of the aquifer, higher uncertainties may have a significant impact on the estimation of the water table. Also, there are other parameters that could have a higher impact on the uncertainty of the recording, as ill-defined vertical datums, pumping wells disrupting groundwater flow patterns, inadequate location of the well, inadequate length of screen setting, etc.			
			В					
Stability	cm	A stable trend can be defined as an average monthly change in groundwater levels that is less than a certain value (e.g. 10 cm), for a series of consecutive years (for	T G	10 cm	*For 5 years trend, 10 or more data points are required, and at least one reading per year for 4 years out of the 5. *For 10 years trend, 20 or more data points are required, and at least one reading from each consecutive two year period. *For 20 years trend, 40 or more data points are required, and at least one reading from each consecutive four year period. This method is the one used by the Bureau of Meteorology (Australia), which is one of the several methods used around the world to estimate a stable trend in groundwater levels.			
		example, 5,	В					
		10 or 20 years). A specific number and density of point data	Т		*It is important to notice that each country might have its own threshold value depending on how marked seasonal fluctuations are (depending on precipitation regimen and hydrogeology, among others)			

	are needed depending on the period to be considered:
Standards and References	

7.2 Lakes

7.2.1 ECV Product: Lake Ice Cover (LIC)

Name	Lake Ice Cover (LIC)							
Definition	Area of lake covered by ice							
Unit	km²							
Note	 Based on lake-wide satellite observations. In situ observations of ice cover can be temporally and spatially consistent, and therefore be useful for climate monitoring, but capture variations and trends in ice cover that are spatially limited (i.e. not lake-wide but rather representative of some limited area observable from lake shore). Lake-wide ice phenology can be derived from LIC (freeze onset to complete freeze over (CFO) dates during the freeze-up period; melt onset to water clear of ice (WCI) dates during the break-up period; and ice cover duration derived from number of days between CFO and WCI dates over an ice year) (Duguay et al., 2015). For lakes that do not form a complete ice cover every year or in some years (e.g. Laurentian Great Lakes), maximum ice cover extent (timestamped with date) is also a useful climate indicator that can be derived; similarly minimum ice extent can be derived for High Arctic lakes that do not completely lose their ice cover in summer. 							
			F 4 7		quirements			
Item needed	Unit	Metric	[1]	Value				
Horizontal Resolution	m		G	50	Smaller water bodies as well as due to increased availability of synthetic aperture radar (SAR) and optical data at resolutions ≤ 50 m (e.g. Wang et al., 2018)			
			В	10	Small water bodies (lakes, ponds) can be observed			
			T	1000	Medium to large sized water bodies as demonstrated through ESA Lakes_cci			
Vertical			G	n/a				
Resolution			В	n/a				
			T	n/a				
Temporal Resolution	day		G	1	Detection of interannual variability and decadal shifts in ice cover and for improving ice, weather forecasting and climate models			
			В	< 1	Allows daily observations under variable cloud cover from optical satellite data			
			T	3-7	Useful for contrasting extreme ice years, numerical weather forecasting, and assessing lake models used as parameterization schemes in climate models			
Timeliness	day	From observation	G	1	In support of ice forecasting systems (e.g. NOAA's Great Lakes Coastal Forecasting System (GLCFS))			
		day	В	0.45				
Required	%		T G	365 1	To support annual climate reporting			
Measurement	70		В	1				
Uncertainty			T	10				
(2-sigma)				, 0				
Stability	%	Per decade	G	0.1				
			В					
Stondanda	ATDO	and LIDD of F	T	1				
Standards and References	 ATBD and URD of ESA Lakes_cci Duguay, C.R., M. Bernier, Y. Gauthier, and A. Kouraev, 2015. Remote sensing of lake and river ice. In <i>Remote Sensing of the Cryosphere</i>, Edited by M. Tedesco. Wiley-Blackwell (Oxford, UK), pp. 273-306. Wang, J., C.R. Duguay, and D.A. Clausi, V. Pinard, and S.E.L. Howell, 2018. Semi-automated classification of lake ice cover using dual polarization RADARSAT-2 imagery. <i>Remote Sensing</i>, 							
				-	0/rs10111727.			

7.2.2 ECV Product: Lake ice thickness (LIT)

Name	Lake i	Lake ice thickness (LIT)								
Definition	Thickne	Thickness of ice on a lake								
Unit	cm	cm								
Note	 LIT measurements are largely based on in situ observational networks. Satellite-based retrieval algorithms are under development (research stage), not operational yet. On-ice snow depth measurements are also useful for both climate monitoring as well as for assessing and improving lake models. 									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	m	Point-scale for	G	50	From synthetic aperture radar (SAR)					
Resolution		in situ	В							
		measurements	Т	1000- 10000	From radar altimetry and passive microwave data (Kang et al., 2014)					
Vertical Resolution	cm		G	1-10	Lower number from in situ measurements, higher number from satellite observations					
			В							
			T	3-15	Lower number from in situ measurements, higher number from satellite observations					
Temporal	day		G	1	From satellite observations					
Resolution			В							
			Т	365	Annual summary of in situ measurements from yearbooks					
Timeliness	day	G	1	Using satellite telecommunication systems for in situ measurements; also daily from satellites for numerical models such as NOAA's Great Lakes Coastal Forecasting System (GLCFS)						
			В							
			T	365	To support annual climate reporting					
Required	cm		G	5						
Measurement			В							
Uncertainty (2-sigma)			Т	15						
Stability	cm	Per decade	G	1						
			В							
			T	10						
Standards and References	 National standards Kang, KK., C. R. Duguay, J. Lemmetyinen, and Y. Gel, 2014. Estimation of ice thickness on large northern lakes from AMSR-E brightness temperature measurements. <i>Remote Sensing of Environment</i>, 150: 1-19, http://dx.doi.org/10.1016/j.rse.2014.04.016. 									

7.2.3 ECV Product: Lake Water Leaving Reflectance

Name	Lake Water Leaving Reflectance									
Definition	visible t	Water-leaving reflectance in discrete wavebands of electromagnetic radiation from near-UV through visible to near infrared and up to shortwave infrared, fully normalized for viewing and solar incident angles.								
Unit		Dimensionless								
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value						
Horizontal Resolution	m		G	100	Smaller water bodies included with resolution < 300m, as demonstrated through Copernicus Global Land Service.					
			В	10	Rivers and small water bodies can be observed					
			Т	1000	Medium to large sized water bodies (up to 50% of global inland water surface area), as demonstrated through ESA Lakes_cci					
Vertical	m		G	1	Identify thermal, density or bio-optical stratification					
Resolution			В	n/a	Identification of vertical stratification from above-water radiometry (requires hyperspectral sensors)					
			Т	n/a	Water column is assumed well-mixed in the layer extending from the surface to the first optical depth, where 90% of reflected light interacts					
Temporal Resolution	day	At equator	G	1	Decade-scale shifts in biological components become detectable in individual water bodies					
			В	<1	Allows daily observations under variable cloud cover					
			T	3-30	Decade-scale shifts in biological components become detectable within global lake biomes					
Timeliness	day	From observation	G	30	Satellite observations supplied with reliable meteorological ancillary data					
		day	В	1	Episodic events can be detected in near real-time					
			T	365	Annual extension of existing data records based on measurements supplied with reliable meteorological records					
Required Measurement Uncertainty (2-sigma)	%	At peak reflectance amplitude	G	10	Expected to allow derived water column properties to be estimated within 0.1 mg m ⁻³ chlorophyll-a and 1 g m ⁻³ suspended matter or 1 NTU. See ESA Lakes_cci URD. Impact of observation uncertainty will vary with lake type (shape of reflectance spectrum).					
			В							
			Т	30	A threshold cannot be clearly defined for all optical water types and lake morphologies. A larger number of observations (large lakes) may compensate for increased per-observation uncertainty.					
Stability	%	per decade	G	0.1	For in situ fiducial reference observations					
			В							
			Т	1	Equates to 0.0001/decade for LWLR, 0.1 mg m ⁻³ per decade for chlorophyll-a and 0.1 g m ⁻³ for suspended matter or turbidity					
Standards and References	ATBD a	nd URD of ESA	Lakes	_cci						

7.2.4 ECV Product: Lake surface water temperature (LSWT)

Name	Lake surface water temperature (LSWT)										
Definition		e of the lake	surfac	ce.							
Unit	°C										
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal			G	100m							
Resolution			В								
			T	5 km ²	Using satellite technics						
Vertical	-		G								
Resolution			В								
			T								
Temporal	day		G	3	To capture diurnal cycles						
Resolution	solution			hours							
			В	1							
			Т	10	Currently achievable with satellite observations. Annual summary in the form of yearbook can also provide useful long-timeseries.						
Timeliness	day		G	1							
			В	3 months							
			T	1 year	For yearbooks						
Required	°C		G	0,1							
Measurement			В	0.3							
Uncertainty			T	0.6							
(2-sigma)											
Stability	°C/decade		G	0,1							
			В								
			Т	0.25							
Standards and References	Technical R	egulations, v	olume	III,Hydrol	ogy, 2006 edition, WMO-No.49						

7.2.5 ECV Product: Lake Water Extent (LWE)

Name	Lake Water Extent (LWE)									
Definition	Areal extent of the surface of a lake.									
Unit	Km ²									
Note	LWE is only measurable using satellite imagery. For shallow lakes the LWE variable is more relevant than the Lake Water Level to detect climate change signal (Mason et al., 1994)									
				Requ	uirements					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	m		G	10	Using sentinel-2 missions. Allows to determine small extent variations					
			В	30	Using landsat (5,7,8) missions. Still relevant for shallow lakes with high extent potential variations					
			Т	1000	is useful to partition surface energy fluxes					
Vertical			G							
Resolution			В							
			Т							
Temporal Resolution		G	5	Looks reasonable for climate change studies. Consistent with possibilities offered by satellite technologies (sentinel-2 constellation can provide in the best case images every 5 days). Will allow detecting LWE changes linked to extreme events.						
			В							
			T	30	For long term evolution of lake extent changes monthly basis is still acceptable and usable. useful to partition surface energy fluxes					
Timeliness	day		G	5	To be consistent with temporal resolution and possibilities offered by satellite technologies (sentinel-2 constellation can provide in the best case images every 5 days)					
			В							
			Т	365	Climate scale					
Required Measurement	%		G	5	For LWE, the uncertainty relatively to the total surface makes sense.					
Uncertainty			В							
(2-sigma)			Т							
Stability	%/decade		G	5						
			В							
			Т							
Standards and References	CCI (Climat Mason I.M.,	Algorithm Theoretical Basis Document (ATBD) of LWE (Lake Water Extent) calculation under ESA's CCI (Climate change Initiative) program. Mason I.M., Guzkowska M.A.J., Rapley C.G., and Street-Perrot F.A., (1994) the response of lake levels and areas to climate change, <i>Climate Change</i> 27, 161-197.								

7.2.6 ECV Product: Lake Water Level

Name	Lake Water Level								
Definition	Lake Water Level (LWL)								
Unit	Elevation of the free surface of a lake relative to a specified vertical datum								
Note	cm								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	-		G		In situ observation by a point measurement on gauge				
Resolution			В						
			Т						
Vertical			G		In situ observation by a point measurement on gauge				
Resolution			В						
			T						
Temporal	day		G	1					
Resolution	Resolution		В						
			T	365	Annual summary in the form of yearbook				
Timeliness	day		G	1	In some case it can be interesting to have near real time				
		-		lake level changes (in case of extreme events)					
			B T	365	For yearbooks				
Required	cm		G	5	For year books				
Measurement	CIII		В	3					
Uncertainty			T	10	Allows to use the considered characteristic in global and				
(2-sigma)			'	10	regional climate models				
Stability	Cm/decade		G	1	regional climate models				
	5 accado		В						
			T	10	Allows to use the considered characteristic in global and				
					regional climate models				
Standards	Technical Re	gulations, v	olume	III, Hyd	rology, 2006 edition, WMO-No.49				
and	Guide to Hyd	drological Pr	actices	s, sixth e	dition,2008, WMO-No.168				
References									

7.3 River Discharge

7.3.1 ECV Product: Water level

Name	Water level								
Definition	Water level is the elevation of the surface of a river or a lake, reservoir regarding a reference (the ellipsoid).								
Unit	m								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution		G	Rivers >20-	In addition to global and regional hydrological data, measurement of least anthropogenic impacted basins to derive changes in rainfall distribution, intensity and determine climate signals.					
			В	Rivers >20- 50m	Measurement of changes in seasonal level patterns at regional level.				
			T	Rivers >50m					
Vertical	N/A		G						
Resolution			В						
			T						
Temporal Resolution			G	Hourly	Required to monitor single events and for assessment of extreme events				
			В	Daily	Suitable to determine general river/lakes patterns at regional and global scales				
			Т	Monthly	-Suitable to support climate related modelling of terrestrial, oceanographic and atmospheric systems				
Timeliness			G	Daily	For high resolution studies and for preparedness, mitigation during short term events				
				Monthly	Regional forecasting and modelling				
			T	Yearly	For climatology the provision of monthly data within one year after data collection is necessary				
Required	cm		G	10					
Measurement			В	10					
Uncertainty (2-sigma)			T	10					
Stability	m/yr	Maximum drift over	G	0.01	For high resolution climatology and necessary to validate variability and extremes				
		reference	В	0.01					
				0.05	For climatologies				
Standards and References									

7.3.2 ECV Product: River Discharge

Name	River Discharge									
Definition			fined	as the volu	me of water passing a measuring point or gauging station in a					
Definition	River discharge is defined as the volume of water passing a measuring point or gauging station in a river in a given time. For station calibration both, the flow velocity and the cross-sectional area has to be measured a few times a year. River-discharge measurements have essential direct applications for water management and related services, including flood protection. They are needed in the longer term to help identify and adapt to some of the most significant potential effects of climate change. The flow of freshwater from rivers into the oceans also needs to be monitored because it reduces ocean salinity, and changes in flow may thereby influence the thermohaline circulation.									
Unit	m³/s									
Note										
				Red	quirements					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution			G	4,000 stations	In addition to global and regional hydrological data, measurement of least anthropogenic impacted basins to derive changes in rainfall distribution, intensity and determine climate signals.					
			В	1,400 stations	Measurement of changes in seasonal discharge patterns at regional level.					
		T	600 stations globally	Major rivers along the continental fringes to capture the freshwater influx to the oceans which has an impact on ocean temperature and salinity which in turn has impacts on ocean currents and weather systems.						
Vertical	N/A		G							
Resolution			В							
			Т							
Temporal Resolution			G	Hourly	Required to monitor single events and for assessment of extreme events					
			В	Daily	Suitable to determine general discharge patterns at regional and global scales					
			T	Monthly	-Suitable to support climate related modelling of terrestrial, oceanographic and atmospheric systems					
Timeliness			G	Daily	For high resolution studies and for preparedness, mitigation during short term events					
			В	Monthly	Regional forecasting and modelling					
			T	Yearly	For climatology the provision of monthly data within one year after data collection is necessary					
Required	%	relative	G	5	Improved measurement techniques and sufficient resources					
Measurement			В	10						
Uncertainty (2-sigma)			Т	15	Discharge measurements are affected by a number of changing conditions and uncertainties due to complex calibration needs such as river cross section flow velocities, changing channel conditions, siltation, scour, weed growth, ice conditions					
Stability	m/yr	Maximum drift over	G	0.01	For high resolution climatology and necessary to validate discharge variability and extremes					
		reference	В	0.05						
			Т	0.1	g .					
Standards and References	No.168 ISO 11 of a ga ISO 74 WMO (dischar ISO Te ISO/TS	wmo Technical Regulations of Hydrology (Wmo-No.49) and Guide to hydrological practices (Wmo-No.168) ISO 1100-1 (1996) Measurement of liquid flow in open channels-Part I: Establishment and operation of a gauging station ISO 748 (1997) Measurement of liquid flow in open channels-Velocity area methods Wmo (Wmo-519) Manual on stream gauging Volume I-Fieldwork and Volume II-Computation of discharge ISO Technical Committee 113 is dealing with all standards related to Hydrometry ISO/TS 24154 (2005) The principles of operation, construction, maintenance and application of acoustic Doppler current profilers (ADCP)								

7.4 Soil moisture

7.4.1 ECV Product: Freeze/thaw

Name	Freeze/thaw									
Definition Unit		Flag indicating whether the land surface is frozen or not Unitless								
Note		w is subsidiary va	ariable	of the EC	CV soil moisture. It is needed because most measurement					
	techniques	techniques do not allow to measure soil moisture when the ground is frozen. Also, land-surface								
					soil is frozen. Instead of binary values (e.g. thawed = 0					
	and mozer	and frozen = 1) probabilities (i.e. probability that the soil is frozen) may be used. Requirements								
Item needed	Unit	Metric	[1]		Derivation, References and Standards					
Horizontal	km	Size of grid	G	1	Same as for Surface Soil Moisture: Needed to fully					
Resolution		cell			resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall,					
					orographic effects, etc.)					
			В	10	Same as for Surface Soil Moisture: Many climate and					
					earth system models are moving to a grid size of 10 km					
			Т	50	or finer. Same as for Surface Soil Moisture: This definition					
					reflects a practical understanding of the boundary					
					between climate science and other related geoscientific					
Vertical	N/A		G		fields such as hydrology, agronomy, or ecology.					
Resolution			В							
T	harma	Time a last	T	,	Company on fam Cumfany Call Marketing No. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
Temporal Resolution	hours	Time between measurements	G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the					
					land-atmosphere interface surface; Needed to depict the					
					interplay between soil moisture, precipitation and					
			В	24	evaporation Same as for Surface Soil Moisture: Needed for closing					
					water balance at daily scales					
			T	48	Same as for Surface Soil Moisture: Important land-					
					atmospheric processes are missed, but drying and wetting trends can be depicted.					
Timeliness	houe		G	3	Same as for Surface Soil Moisture: For climate					
			В	6	communication and improved preparedness Same as for Surface Soil Moisture: To support the					
			D	J	assessment of on-going extreme events (droughts,					
			-	40	extreme wetness)					
			Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis					
Required	%	Overall	G	98	Same as for Surface Soil Moisture: More demanding goal					
Measurement Uncertainty		classification accuracy			is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil					
(2-sigma)		accuracy			properties, topography, vegetation cover					
			В	95	Same as for Surface Soil Moisture: Accuracy goal as first					
					adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at					
					the 4 th Satellite Soil Moisture Validation and Application					
					Workshop (Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W.					
					Dorigo (2017) Fourth Satellite Soil Moisture Validation					
					and Application Workshop, GEWEX News, 28(4), 13-14.)					
			T	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS					
					and SMAP satellites designed for measuring soil					
				0.00=	moisture.					
Stability	Unknown	Unknown	G	0.005	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be					
					critically assessed.					
			В	0.01	Same as for Surface Soil Moisture: This value still lacks					
					justification in the scientific literature and needs to be critically assessed.					
			Т	0.02	Same as for Surface Soil Moisture: This value still lacks					
					justification in the scientific literature and needs to be					
Standards	Required N	Measurement Unce	ertaint	y (2-sigm	critically assessed. na): Confusion matrices should be computed for different					
and					ition periods from frozen to thawed conditions are most					

References critical for assessing the accuracy of the freeze/thaw estimates.

7.4.2 ECV Product: Surface Inundation

measurement techniques of Also, land-surface process	sidiary va do not al des funda robability R [1] ell G	riable of to low to me mentally of that the equirem	the ECV soil moisture. It is needed because most easure soil moisture when the soil surface is inundated. chance when the soil is inundated. Instead of binary soil is inundated) may be used.
Note Surface inundation is subsime as ure ment techniques of Also, land-surface process values probabilities (i.e. process values values process values process values process values process values process values process values valu	do not al des funda robability R [1] B T G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G G B T G G B T G G B T G G B T G G G B T G G G G G G G G G G G G	low to mementally of that the equirem Value 1	chance when the soil is inundated. Instead of binary soil is inundated) may be used. Perivation, References and Standards Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.) Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer. Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific
Temporal Resolution Metric	do not al des funda robability R [1] B T G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G G B T G G B T G G B T G G B T G G G B T G G G G G G G G G G G G	low to mementally of that the equirem Value 1	chance when the soil is inundated. Instead of binary soil is inundated) may be used. Perivation, References and Standards Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.) Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer. Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific
Horizontal Resolution	Ell G B T G B T G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G B T G G G B T G G G B T G G G B T G G G G G G G G G G G G	Value 1	Derivation, References and Standards Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.) Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer. Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific
Horizontal Resolution	B T G B T G G B T G G G B T G G G G G G	10	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.) Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer. Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific
Temporal Resolution hours Time between measurements	T G B T G G		earth system models are moving to a grid size of 10 km or finer. Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific
Temporal Resolution hours Time between measurements	G B T	50	reflects a practical understanding of the boundary between climate science and other related geoscientific
Temporal Resolution hours Time between measurements	B T n G		helds sach as fryarology, agronolly, or ecology.
Temporal hours Time between measurements	T n G		
Resolution measurement	n G		
Timeliness hour		6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation and evaporation
Timeliness hour	В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales
Timeliness hour	Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.
	G	3	Same as for Surface Soil Moisture: For climate communication and improved preparedness
	В	6	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)
	Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis
Required % Overall classification uncertainty (2-sigma)	G	98	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover
	В	95	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.)
	Т	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.
Stability Unknown Unknown	G	0.005	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.
	В	0.01	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.
	Т	0.02	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.
Standards			

and References

7.4.3 ECV Product: Root zone soil moisture

Name	Root zone soil moisture									
Definition		The root-zone soil moisture content refers to the average water content in the root-zone								
Unit	m³/m³									
Note	There is no agreed definition of the depth of the root-zone layer. Considering that many in situ networks have sensors up to a depth of about 30 cm, a first definition of the root-zone layer may be 0-30 cm or similar ranges. Measuring the water content in the root-zone is either not possible (e.g. when using microwave satellites) or costly (e.g. using in situ measurements). Hence, the root-zone soil moisture content has initially not been considered by GCOS. However, as most applications require information about the soil moisture content in deeper soil layers, the root-zone soil moisture content was added to the ECV soil moisture in the GCOS 2016 Implementation Plan. Because it is relatively new variable, all specifications given above should be regarded with care.									
				Requirer						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolution	km	Size of grid cell	G B	10	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.) Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km					
					or finer.					
			T	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.					
Vertical	cm		G	50	Based on ECMWF					
Resolution			В	75	Based on ECMWF					
	_		Т	100	Based on ECMWF					
Temporal Resolution	hours	ours Time between measurements	G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation and evaporation					
		В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales						
			T	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.					
Timeliness			G	1 week	Same as for Surface Soil Moisture: For climate communication and improved preparedness					
			В	1 month	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)					
			T	1 year	Same as for Surface Soil Moisture: For assessments and re-analysis					
Required Measurement Uncertainty (2-sigma)	m ³ /m ³	Unbiased root mean square error	G	0.03	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover					
			В	0.04	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.)					
			Т	0.08	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.					
Stability	m ³ /m ³ per reference		G	0.005	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.					
	period (> 1		В	0.01	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be					

	year)			critically assessed.	
			T	0.02	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.
Standards and References					

7.4.4 ECV Product: Surface soil moisture

Name	Surface soil moisture (Also sometimes referred to as topsoil moisture, surface wetness, surface humidity)								
Definition	The depth of the topmost soil layer is often only qualitatively defined as the actual sensing depth varies with measurement technique, water content, and soil properties and usually cannot be specified with any accuracy.								
Unit	m^3/m^3								
Note	Soil moisture refers to the average water content in the soil, which can be expressed in volumetric, gravimetric or relative (e.g. degree of saturation) units. All units can be inter-converted given the availability of soil property information (bulk density, porosity etc.), yet the use of the volumetric soil moisture content as the standard measurement unit is encouraged.								
Announce de de	1.1	0.0 - 4 1 -	F43		quirements				
Item needed	Unit	Metric	[1]	Value	•				
Horizontal Resolution	km		G	1	Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.)				
			В	10	Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical	N/A		G						
Resolution			В	4	Franco dell'anche ancil company 1107				
			T	1	For modelling bare soil evaporation and LST a very thin skin layer is required (See Dorigo et al., 2017, example from ECMWF)				
Temporal Resolution	hours		G	6	Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation and evaporation				
			В	24	Needed for closing water balance at daily scales				
			Т	48	Important land-atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	hour		G	3	For climate communication and improved preparedness				
			В	6	To support the assessment of on-going extreme events (droughts, extreme wetness)				
Required	m³/m³	Unbiased	T G	0.03	For assessments and re-analysis More demanding goal is probably unrealistic due to high				
Measurement	111 /111	root	G	0.03	variability of soil moisture at small-scales due to changes in				
Uncertainty		mean	_	0.04	soil properties, topography, vegetation cover				
(2-sigma)	2-sigma) square error	В	0.04	Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.)					
			Т	0.08	This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability	m³/m³ per		G	0.005	This value still lacks justification in the scientific literature and needs to be critically assessed.				
	reference period		В	0.01	This value still lacks justification in the scientific literature and needs to be critically assessed.				
	(> 1 year)		T	0.02	This value still lacks justification in the scientific literature and needs to be critically assessed.				
Standards and References									

- Measurement uncertainties alone are not a sufficient criterion for data quality. While a certain noise level (e.g., 0.04 m3/m3) might be tolerable in very dynamic soil moisture regimes, the same noise level may render a product useless in areas with lower soil moisture variability. However, in principle, the transition from mere uncertainty quantification to spatially comparable quality estimation can be easily done by transitioning to signal-to-noise ratio (SNR) based metrics.
- Uncertainty requirements commonly don't have a traceable connection to application requirements which might differ significantly among user groups.

Taken as a whole, current concepts of specifying accuracy requirements are incomplete and partly questionable, and should therefore be revised taking into account the above described issues. Notice that EUMETSAT has recently changed their H-SAF soil moisture product requirements by specifying signal-to-noise ratio (SNR) target requirements for committed areas (global land areas excluding deserts, rainforests, and high-latitude areas with mostly frozen/snow-covered regimes)

7.5 ECV: Terrestrial Water Storage (TWS)

7.5.1 ECV Product: TWS Anomaly

Name	Terrestrial water storage (TWS) anomaly								
Definition	TWS is t	TWS is the total amount of water stored in all continental storage compartments (ice caps, glaciers,							
					dwater, surface water bodies, water in biomass). The change of				
					get of the water fluxes precipitation, evapotranspiration and runoff,				
	i.e., it closes the continental water balance.								
Unit	km³ or mm water equivalent (kg/m²)								
Note		Measuring TWS is possible by satellite and terrestrial gravimetry in relative terms only, not in absolute values. Thus, TWS is given as the deviation relative to a long-term mean (TWS anomaly).							
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal			G	1	Resolve the topography- and land cover-driven patterns of				
Resolution	km				landscape-scale water storage dynamics, e.g., ref #2				
			В	10	Many climate and Earth system models are moving to a grid size				
					of 10 km or finer. Often a relevant local to regional water				
					management scale				
			T	200	Comprehensive continental-scale patterns of water storage				
Vertical			_		changes, e.g., ref #1				
Vertical Resolution			G B		Not applicable as total water storage represents an integrative value in the vertical, over all storage compartments and depths				
Resolution			Т		value in the vertical, over all storage compartments and depths				
Temporal			G	1	To resolve water storage changes caused by heavy precipitation				
Resolution	days		J	•	events and occurring during flood events				
	aays		В		The state of the s				
			T	30	To resolve major seasonal, intra- and inter-annual dynamics as				
					well as long-term trends of water storage				
Timeliness			G	1	Required latency for warning for and managing of extreme events,				
	days				in particular floods				
			В						
Demotor d			T	60-90	Current latency of GRACE-FO based TWS products				
Required Measurement	mm		G	1	Order of magnitude required to resolve the water storage effect of daily evapotranspiration				
Uncertainty	111111		В		daily evaport anspiration				
(2-sigma)			T	20	Order of magnitude to resolve monthly TWS variations				
Stability			G	<1	Stability needed to detect subtle long-term TWS trends caused by				
	mm/yr				global change and anthropogenic impacts on the water cycle				
			В						
			T	<5	Stability needed to resolve major long-term water storage				
					changes, e.g., related to melting ice sheets, groundwater depletion				
Standards	•	#1 Pail.	R Bin	gham. R	., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M.,				
and				-	, L., Panet, I., Wouters, B., Panel, I.E. (2015): Science and User				
References					obal Mass Transport to Understand Global Change and to Benefit				
				_	physics 36, 743-772.				
	•				M., Mikolaj, M., Creutzfeldt, B., Schroeder, S., Wziontek, H. (2017):				
	Ţ				palance monitoring with an iGrav superconducting gravimeter in a				
					gy and Earth System Sciences, 21(6), 3167-3182, doi:				
				- Hydrolo; 21-3167-					
		10.5194/	11622-	21-310/-	ZU 17.				

8. CRYOSPHERE

8.1 Glaciers

8.1.1 ECV Product: Glacier Ice Thickness

Name	Glacier I ce Thickness							
Definition	Globa	I dataset of glacie	r ice tl	nickness				
Unit	m	<u> </u>						
Note	Glacie	r ice thickness is	measu	red in-situ	by the radio-echo sounding (Plewes and Hubbard, 2001).			
					irements			
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal			G					
Resolution			В					
			Т					
Vertical	m	The vertical	G	~1	Vertical resolution for 20 MHz GPR			
Resolution		resolution	В					
		highly	Т	~5	Vertical resolution for 200 MHz GPR			
		dependent on						
		the frequency						
		of GPR.						
Temporal			G					
Resolution			В	5 years	Length of time period between two surveys usually used in			
				_	glaciology.			
			Т	Decadal	The frequency "decadal" refers to the lowest requirement			
					on the length of the time period needed between two			
Therefore		la de la constante de la const	_		surveys to avoid missing geometry change information.			
Timeliness		In view of the low need for	G B					
		temporal	Т					
		sampling, the	1					
		timeliness is						
		not so						
		important.						
Required	m	Uncertainty at	G					
Measurement		point location.	В					
Uncertainty			Т	5	Uncertainties even only consider at specific point can be			
(2-sigma)					influenced by various factors. As evaluated from an			
					example study, uncertainty at point location is around 5 m.			
					(Lapazaran et al., 2016)			
Stability		Glacier ice	G					
		thickness	В					
		surveyed	Т					
		independently.						
		No cumulative effect of the measurement system should						
		be considered.						
Standards	• Plew		lubbar	d (2001). '	'A review of the use of radio-echo-echo sounding in			
and					phy 25(2): 203-236.			
References					pañol and F. J. Navarro (2016). "On the errors involved in			
					rating radar measurement errors." Journal of Glaciology			
		6): 1008-1020.	Ü					

8.1.2 ECV Product: Glacier Mass Change

Name	Glacier Mass Change									
Definition			(surfa	ice) mass c	hanges from glaciological method					
Unit		kg per m ² Glacier mass change is measured in-situ by the glaciological method (Cogley et al. 2011, Zemp et al.								
Note	2013)		measui	red in-situ i	by the glaciological method (Cogley et al. 2011, Zemp et al.					
	2013)			Requir	ements					
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal			G		·					
Resolution			В							
			T							
Vertical Resolution	m		G B	0.01	The vertical resolution "0.01 m or 10 kg per m ² " refers to					
Resolution			ь	0.01	the precision of ablation stake and snow pit readings at					
					point locations					
			Т	0.05	Lowest requirement in glaciology					
Temporal Resolution			G	monthly	Monthly observations in melting season to depict melting processes.					
			В	seasonal	The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (in spring) and of maximum ablation (at the end of hydrological year).					
			Т	annual	The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (in spring) and of					
Timeliness	days		G		maximum ablation (at the end of hydrological year).					
Titlemiess	uays		В							
			T	365	Ideally, glaciological measurement become available after completion of the annual field campaigns. The WGMS grants a one-year retention period to allow investigators time to properly analyze, document, and publish their data before submitting the data.					
Required	kg	Glacier-wide	G		Ü					
Measurement Uncertainty (2-sigma)	m ⁻ ² a ⁻¹	(random) uncertainty estimate including uncertainties from point	В	0.2	The Required Measurement Uncertainty (2-sigma) "200 kg m ⁻² a ⁻¹ " (= 0.2 m w.e. m ⁻² a ⁻¹) refers to the glacier-wide annual balance which is interpolated from the point measurements. The target value was selected based on a review of long-term mass balance measurement series (Zemp et al. 2013).					
	measurements, snow, firn and ice density conversions, and extrapolation to glacier-wide	snow, firn and ice density conversions, and extrapolation	Т	0.5	Lowest requirement in glaciology.					
Stability	kg	Glacier-wide	G							
	per	bias in mass	В							
	m ² change measurements over a decade.	T	2	The stability can be assessed by validation and – if necessary – calibration of a glaciological times series with decadal results from the geodetic method (cf. Zemp et al. 2013). As a rule of thumb, stability is recommended to be better than 300 kg m-2 a-1 (cf. Zemp et al. 2013).						
Standards and References	Mohol H., Elv series • Zem	dt, G., Mercer, A., vehøy, H., and And . The Cryosphere, pp, M., Frey, H., G	Mayer dreasse 7, 122 artner-	r, C., Joerg, en, L.M. (20 27-1245, do Roer, I., Nu	p. D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U., P.C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, D13): Reanalysing glacier mass balance measurement in 10.5194/tc-7-1227-2013. ussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C.					
					glacier decline in the early 21st century. Journal of org/10.3189/2015JoG15J017					

8.1.3 ECV Product: Glacier Elevation Change

Name	Glacier Elevation Change							
Definition				ation chang	ges from geodetic methods.			
Unit	m/yea							
Note					-situ and remotely sensed using the geodetic method (Cogley			
	et ai.	2011, Zemp et al	. 2013		irements			
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal	m		G	1	The fine resolution (1-5 m) data be used to extract mass			
Resolution					change and dynamic characteristics in area with abnormal topography (quite steep slope, ice fall, calving snout).			
			В	25	A stable size of raster for measuring volume change (Joerg and Zemp, 2014).			
			T	90	Resolution of SRTM, which most widely used as reference to extract elevation change.			
Vertical Resolution	m		G	0.01	Annual mass change of glaciers be evaluated with data with vertical resolution < 0.01 m (e.g. Xu et al., 2019).			
			В	2	Roughly corresponding to the resolution to evaluated the annual mean mass change if elevation change observed decadal.			
			T	5	The targets for vertical resolutions refer to requirements for differences of digital elevation models (dDEM) in mountainous terrain (e.g. Joerg and Zemp, 2014).			
Temporal Resolution			G	Yearly	To evaluate annual mass change and detect the signal of potential abnormal events (e.g. surge).			
			В					
			T	Decadal	The frequency "decadal" refers to the length of the time period needed between two geodetic surveys in order to safely apply a density conversion from volume to mass change (cf. Huss 2013, Zemp et al. 2013).			
Timeliness		In view of the	G					
		low need for	В					
		temporal sampling, the	Т					
		timeliness is						
		not so						
		important.						
Required Measurement	m	Glacier-wide (random)	G B	2	The Required Measurement Uncertainty (2-sigma) refers to			
Uncertainty		uncertainty	D	2	the glacier-wide uncertainty estimate based on a quality			
(2-sigma)		estimate			assessment of the dDEM product over stable terrain. The			
		based on a quality			value of "2m per decade" (= 0.2 m ⁻² a ⁻¹) is set in relation to the corresponding uncertainty requirement of the			
		assessment of			glaciological method.			
		the digital	Т		g. a.c. a.c. g. c.a. c. c.a. c.a.			
		elevation						
		model differencing						
		product over						
		stable terrain.						
Stability	m	Glacier-wide bias in	G B	2	The stability of "2 m/decade" refers to a bigs in the glasier			
		elevation	ט	2	The stability of "2 m/decade" refers to a bias in the glacier- wide change of 0.2m m ⁻² a ⁻¹ , which is about one third to			
		change			half of the average annual ice loss rate over the 20th			
		measurements			century (Zemp et al. 2015) and is good enough for			
		over a decade.	Т		validation of glaciological series (Zemp et al. 2013).			
Standards	• Huss	s, M. (2013). Den		sumptions	for converting geodetic glacier volume change to mass			
and	chang	e. The Cryospher	e, 7(3)), 877–887	'. http://doi.org/10.5194/tc-7-877-2013			
References					uating Volumetric Glacier Change Methods Using Airborne			
	Laser Scanning Data. Geografiska Annaler: Series A, Physical Geography, 96(2), n/a-n/a. http://doi.org/10.1111/geoa.12036 • Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U.,							
					g, P.C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, 2013): Reanalysing glacier mass balance measurement			
					doi:10.5194/tc-7-1227-2013.			
	• Zem	р, М., Frey, Н., G	ärtner	-Roer, I., I	Nussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C.			
	•	, ,			al glacier decline in the early 21st century. Journal of			
					oi.org/10.3189/2015JoG15J017 , P. (2018). Long-range terrestrial laser scanning			
	λα,	,,,,, V	91	, a <u>L</u> 1100	, (== 10). Early taring to root for factor southing			

measurements of summer and annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China. The Cryosphere Discussions, 1-28. doi: 10.5194/tc-2018-128.

8.1.4 ECV Product: Glacier Area

Name	Glacier Area								
Definition		Worldwide inventory of map-projected area covered by glaciers.							
Unit	Km ²								
Note	Glacier area is the map-projected size of a glacier in km ² . The product comes as worldwide inventory of glaciers outlines with various related attribute fields (e.g. area, elevation range, glacier characteristics). Typically, a minimum size of 0.01 or 0.02 km ² is applied, to avoid including small ice patches which do not flow and are therefore not glaciers.								
Manager and a dead	1114	B.O. Austra	F47		irements				
I tem needed Horizontal	Unit m	Metric	[1] G	Value 1	Derivation, References and Standards Spatial resolutions better than 15 m (e.g. the 10 m from				
Resolution			G	·	Sentinel 2) are preferable as typical characteristics of glacier flow (e.g. crevasses) only become visible at this resolution (Paul et al. 2016).				
			В	20	The horizontal resolution of 15-30 m refers to typically used satellite sensors (Landsat and ASTER) to map glaciers.				
			T	100	At coarser resolution the quality of the derived outlines rapidly degrades.				
Vertical	m	Glacier area is	G	F0					
Resolution		a horizontal 2D product.	B T	50 100	Glacier area distribution is usually given per 50 or 100 m				
		Vertical resolution is not necessary.		100	elevation bins.				
Temporal Resolution	years		G	1	The temporal sampling "Annual" means that each year the availability of satellite (or aerial) images should be checked to identify the image with the best snow conditions (i.e. snow should not hide the glacier perimeter).				
			В		show should not filde the glacier perimeter).				
			Т	10	Decadal data used to evaluate glacier change in regional scale.				
Timeliness	years		G	1					
			B T	10	For multi-temporal inventories at decadal resolution, the				
			'	10	timeliness of the product availability is not so important.				
Required		Random error	G	1%	Glacier outlines mapped with high resolution (1 m) remote				
Measurement Uncertainty		of glacier outlines	В	5%	sensing images (take glacier area in average as 1 km²)				
(2-sigma)		produced in dependency of	Б	5%	Glacier outlines mapped with medium resolution (15-30 m) remote sensing images (take glacier area in average as 1 km ²)				
		remote	Т	20%	Glacier outlines mapped with low resolution (100 m) remote				
		sensing imagery used, with respect to the total			sensing images (take glacier area in average as 1 km²)				
		glacier area							
Stability		Glacier area at	G						
		different times extracted	B T						
		independently.							
		No cumulative							
		effect of the measurement							
		system should							
		be considered.							
Standards and References	• Paul, F., N. Barrand, E. Berthier, T. Bolch, K. Casey, H. Frey, S.P. Joshi, V. Konovalov, R. Le Bris, N. Mölg, G. Nosenko, C. Nuth, A. Pope, A. Racoviteanu, P. Rastner, B. Raup, K. Scharrer, S. Steffen and S. Winsvold (2013): On the accuracy of glacier outlines derived from remote sensing data. Annals of Glaciology, 54 (63), 171-182								
	Sentin		ping G	lacier Ext	agler and G. Schwaizer (2016): Glacier Remote Sensing Using ents and Surface Facies, and Comparison to Landsat 8. 10/rs8070575.				
	• Zem _l (2015)	o, M., Frey, H., Gâ). Historically unpi	artner- recede	Roer, I., nted glob	Nussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. al glacier decline in the early 21st century. Journal of oi.org/10.3189/2015JoG15J017				

8.2 Ice sheets and ice shelves

8.2.1 ECV Product: Grounding Line Location and Thickness

Name	Ground	ing Line Loca	ition a	and Thic	kness						
Definition		Location of the line (zone) where ice outflow to an ocean begins to float, and thickness of ice at that location									
Unit	Thickness in m, coordinates of location										
Note	THICKITES	THICKIESS III III, COOLUMATES OF IOCATION									
Note		Requirements									
Item needed	Unit Metric [1] Value Derivation, References and Standards										
Horizontal	m	Wictito	G	100	Derivation, References and Standards						
Resolution			В	100							
			T	1000							
Vertical	N/A	2d	G								
Resolution		coordinates	В								
		of	Т	10							
		grounding									
		line									
Temporal			G								
Resolution			В								
			T	1							
Thereties			_	year							
Timeliness			G B								
			Т								
Required	m	Position	G	1							
Measurement	111	and	В	•							
Uncertainty		thickness	T	10							
(2-sigma)			•	10							
Stability	m	Position	G								
		and	В								
		thickness	T	1							
Standards											
and											
References											

8.2.2 ECV Product: Ice Volume Change

Name	Ice Volume Change								
Definition	Direct measu	rement of lo	cal ma	ss change	es or inferred mass change from combining measurements				
Unit	10km3/year				J				
Note	-								
				Requir	rements				
Item needed	Unit	Metric	[1]	Value					
Horizontal	km	Size of	G						
Resolution		grid cell	В						
		3	Т	50					
Vertical	N/A	One	G						
Resolution		value per	В						
		point of Earth's surface	T						
Temporal Resolution		time	G	30 days					
			В						
			T	1 year					
Timeliness			G	,					
			В						
			T						
Required	km3/year	error of	G						
Measurement		measured	В						
Uncertainty		in-situ	Т	10					
(2-sigma)		using the geodetic method and remotely sensed surface elevation.							
Stability	10km3/year	error of	G						
		measured	В						
	geode metho and remote sensed surfac	using the geodetic method	Т	1					
Standards									
and									
References									

8.2.3 ECV Product: Ice Velocity

Name	Ice Velocity								
Definition		-parallel vecto							
Unit	m year	¹ – average sp	eed ir	grid cell	of surface ice flow				
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal	m	Grid cell	G	50	Hvidberg et al (2021)				
Resolution		size	В	100	Hvidberg et al (2021)				
			T	1000	Hvidberg et al (2021)				
Vertical	N/A	One value	G						
Resolution		per point	В						
		of Earth's	T						
		surface							
Temporal		time	G	30					
Resolution				days					
			В						
			Т	1					
			_	year					
Timeliness			G						
			В						
			T	10	11.11				
Required	m	error of	G	10	Hvidberg et al (2021)				
Measurement	year ⁻¹	measured	В	30	Hvidberg et al (2021)				
Uncertainty (2-sigma)		in-situ using the	Т	100	Hvidberg et al (2021)				
		geodetic							
		method							
		and remotely sensed surface							
		elevation.							
Stability	ms ⁻¹	error of	G						
		measured	В						
		in-situ	T	10					
		using the	·						
		geodetic							
		method							
		and							
		remotely							
		sensed							
		surface							
Chandanda	1.1. 20	elevation.		D	December December 1 to Charles and market of ECAL Office				
Standards					ments Document for the Ice_Sheets_cci project of ESA's Climate				
and					g 2012. http://esa-icesheets-greenland-				
References	cci.org/	cci.org/index.php?q=webfm_send/19							

8.2.4 ECV Product: Surface Elevation Change

Name	Surfa	Surface Elevation Change								
Definition		measurements of most firn layers	the he	eight abo	ve a reference (geoid or ellipsoid) of the snow-air surface or					
Unit	Annua	al change in eleva	tions a	bove sea	level measured in meters (m/year)					
Note										
		Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	m	Spacing of	G							
Resolution		measurements	В							
			T	100						
Vertical	N/A	One value per	G							
Resolution		point of	В							
		Earth's	Т							
Temporal		surface time	G	30						
Resolution		time	G	days						
Resolution			В	uays						
			T	1						
			•	year						
Timeliness			G	,						
			В							
			Т							
Required	m a-	error of	G							
Measurement	1	measured in-	В							
Uncertainty		situ using the	T	0.1						
(2-sigma)		geodetic								
		method and remotely sensed								
		surface								
		elevation.								
Stability	m a-	error of	G							
	1	measured in-	В							
		situ using the	Т	0.01						
		geodetic								
		method and remotely sensed								
		surface elevation.								
Standards		elevation.								
and										
References										

8.3 Permafrost

8.3.1 ECV Product: Permafrost extent

Name	Permafrost extent								
Definition	Fraction	n of permafr	ost-ur	nderlain a	rea within a grid cell's horizontal area. Permafrost is subsurface				
					uously at or below 0°C throughout at least two consecutive years,				
			d time	periods	up to many millennia.				
Unit	fraction								
Note		The requirements for permafrost extent reflect the determination through models which use relevant							
	satellite observations as input in the context of permafrost monitoring								
	Requirements								
I tem needed	Unit	Metric	[1]	Value	•				
Horizontal Resolution	m	Size of grid cell	G	1	Expert survey results documented in Duchossois et al. (2018) and in NRC (2014)				
			В	10	Expert survey results documented in NRC (2014)				
			Т	100	Expert survey results documented in NRC (2014)				
Vertical			G						
Resolution			В						
			Т						
Temporal	years		G	1	Expert survey results documented in Duchossois et al. (2018)				
Resolution			В						
			T	10	Expert survey results documented in Duchossois et al. (2018)				
Timeliness			G						
			В						
	04		T	0.5	5 1 (2012)				
Required	%	Accuracy	G	95	Expert survey results documented in Duchossois et al. (2018)				
Measurement			В						
Uncertainty (2-sigma)			T	85	Expert survey results documented in Duchossois et al. (2018)				
Stability			G						
Stability			В						
			T						
Standards									
and	 Bart 	sch, Annett	; Allar	d, Michel;	Biskaborn, Boris Kolumban; Burba, George; Christiansen, Hanne				
References	H; Dug	uay, Claude	R; Gr	osse, Gui	do; Günther, Frank; Heim, Birgit; Högström, Elin; Kääb, Andreas;				
	Keuper	, Frida; Lan	ckman	, Jean-Pie	erre; Lantuit, Hugues; Lauknes, Tom Rune; Leibman, Marina O;				
	Liu, Lin	; Morgenste	ern, An	ne; Necs	oiu, Marius; Overduin, Pier Paul; Pope, Allen; Sachs, Torsten;				
	Séjourr	né, Antoine;	Strele	etskiy, Dn	nitry A; Strozzi, Tazio; Ullmann, Tobias; Ullrich, Matthias S; Vieira,				
	Goncald	o; Widhalm,	Barba	ara (2014): Requirements for monitoring of permafrost in polar regions - A				
	commu	nity white p	aper i	n respons	se to the WMO Polar Space Task Group (PSTG), Version 4, 2014-				
		-	•	-	ea.de/10013/epic.45648.d001				
					A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C.;				
					2016): GlobPermafrost – How space-based earth observation				
					rost. Proceedings of the ESA Living Planet Symposium, pp. 6.				
					ms/documents/publications/publication-results-of-the-user-survey-				
	•	esa-special-							
		•	•		· · · · · ·				
					ermann, S., Heim, B., Pellet, C., Onacu, A., Kroisleitner, C., Strozzi,				
	-	-			Jser Requirements Document, v1.1				
	•				s/CCI+_PERMA_URD_v1.1.pdf				
					umazou, S. Antunes, A. Bartsch, T. Diehl, F. Dinessen, P. Eriksson,				
					ova, J. Muñoz-Sabater, T. Nagler, O. Nordbeck, User Requirements				
					nase 1 Report, EUR, Publications Office of the European Union,				
					N 978-92-79-80961-3, doi:10.2760/22832, JRC111067				
	https://	/publications	s.jrc.e	c.europa.	eu/repository/handle/JRC111067				
					4). Opportunities to Use Remote Sensing in Understanding				
					Characteristics: Report of a Workshop. Washington, DC: The				
				_	/doi.org/10.17226/18711.				
					J				

8.3.2 ECV Product: Permafrost Temperature (= PT)

Unit °C Note Measurements made in boreholes, and usually presented as temperature profiles. Ac surface layer that thaws/freezes every year ZAA = Zero annual amplitude, maximum penetration depth of seasonal variations	Permafrost Temperature (PT) Permafrost is subsurface earth material that remains continuously at or below 0°C throughout at least two consecutive years, usually for extended time periods up to many millennia. Product definition: Ground temperatures measured at specified depths along profiles.								
Requirements Requirements									
Item needed Unit Metric [1] Value Derivation, References and	l Standards								
Resolution N/A Spatial distribution of boreholes N/A Spatial G Regular spacing It is necessary to fill the spatial gate calibrate/compare with remote ser and climate modeling results.	nsing products								
B Transects Longitudinal and latitudinal transect assessment of gradients.	cts allow the								
B Various settings Various terrain with different ground conditions (including varying moist content, thermal properties) and topoclimatic/microclimate condition vegetation, snow cover, slope, asp In mountain permafrost, various gand topo-climatic settings: rock-gliwalls, in various aspects. Allows for comparison of different climate change.	ture and ice ns (e.g. pect) eomorphological aciers, rock								
T Characterization of bioclimate zones Boreholes in continuous, discontinuous sporadic permafrost areas. In discontinuous/sporadic permafrost be located in permafrost affected a boreholes in non-permafrost within areas can be useful for comparisor comparison and for understanding regional permafrost conditions. Location of boreholes is strongly daccessibility of borehole sites.	, boreholes must zones. Some n permafrost n, model evolution of								
Vertical ResolutionN/ABorehole depth, definedGDeeper than ZAAAllows assessment of mid- to long ZAA	term trends.								
according to characteristic B Down to ZAA Allows measurement of the full sea variations, and assessment of inte									
permafrost T Below Allows calculation of active layer d permafrost measurement of the temperature of table permafrost at the permafrost table	of the uppermost								
m Sensor G Above ZAA 0.2 Spacing typically increases with de spacing along to 0.5 Actual spacing has to be adapted to									
borehole for B conditions and should be higher or									
continuous T Above ZAA: 0.5 values (active layer/permafrost, Zamonitoring / to 5 values (active layer/permafrost, Zamonitoring / accurate interpolation.	AA), to allow an								
measuring G Below ZAA: 5 to interval for 10 manual B									
measurement T Below ZAA > 10									
Temporal Sampling G Active layer: 1h Only useful in topmost layers, affer variations.	cted by diurnal								
continuous B Active layer: 1d Assessment of rapid changes due to water infiltration.	for instance to								
periodicity for T Active layer: 1 Sites measured only once a year c manual month for active layer monitoring	an not be used								
measurement. Depends on Depen	errain with high								
depth, must be more B Down to ZAA: 1 Assessment of seasonal variations month									
frequent in active layer T Down to ZAA: 1 Sites with manual measurement at only once a year.	re measured								
than below ZAA: 1 Allows detection of extreme season month	nal variations.								
B Below ZAA: 1 Sites with manual measurement at year only once a year.	re measured								
T Below ZAA: 5 Sufficient for mid- to long-term trees	end.								

Timeliness	У	У		Weekly /real time 1 year	Timely reporting, fast intervention in case of problems where possible reduces the risk of large data gaps Most site measurements are retrieved only once a
			T	5 years	Some site measurements are not retrieved every year
Required Measurement Uncertainty	°C	Sensor uncertainty	G B	0.01 0.1	Useful for finer definition of freeze/thaw dates Mean annual trends are often less than 0.1 °C. Reachable with high resolution sensors.
(2-sigma)			Т	0.2	Reachable with most standard sensors.
Stability	°C Sensor drift over reference	G B	0.01 0.05	Not realistic? Should be reached in order to maintain drift below trend.	
		period. Assumed drift value of commonly used sensors. Sensor drift correction needs recalibration of sensors	T	0.1	Commonly accepted value based on experience. Calibration of sensor probe is possible in case of manual measurement. It is often impossible for fixed sensor chains, that additionally can be blocked in the borehole due to e.g., shearing. Drift can be minimized by 3 or 4 wire mounting. In situ calibration/correction is possible for sub-surface sensors using "zero curtain".
Standards and References					

8.3.3 ECV Product: Active Layer Thickness (= ALT)

Name		_ayer Thickne			
Definition					annual thawing and freezing in areas underlain by
		ost. Thickness surface subsid		sonally thawed	soils measured in (cm), surface displacements measured
Unit	cm	Surface Subsid	ence.		
Note		e three establi	shed r	methods for me	easuring ALT: mechanical probing, frost tubes and
11010					otion that 0° C = freeze point). In all three cases, the
	result is	a depth/thickn	iess va	alue expressed	in cm.
				Requirer	
Item needed Horizontal	Unit	Metric Spatial	[1] G	Value	Derivation, References and Standards
Resolution	m	distribution	G	Regular spacing	It is necessary to fill gaps in order to calibrate and compare with remote sensing products and climate
		of sites	В	Transects	modeling results
			T	sufficient	
				sites to characterize	
				each	
				bioclimatic	
				subzone	
Vertical	cm	Spacing of	G	2	Vertical resolution of ground temperature sensor
Resolution		sensors	B	10 20	spacing for the interpolation
Temporal			G	1 year, at	ALT is an annual value, which is measured once a year
Resolution				end of	at the end of the thawing period. In case of continuous
				thawing	measurement (borehole data), ALT is defined at time of
			В	period	maximal penetration of above 0°C temperature.
			T	1 year, at	
				end of	
				thawing	
Timeliness			G	period 1 year	ALT is measured and provided once per year.
			В	1 your	The Thousand and provided once per year.
			T	1 year	
Required	cm	mechanical	G	1/5	Mechanical probing/frost tubes/ temperature
Measurement Uncertainty		probing penetration	В	0.445	interpolation from boreholes.
(2-sigma)		uncertainty	T 2/1!	2/15	
		/ sensor			
Stability	cm	uncertainty Stability =	G	1	
	CITI	bias due to	В	5	In ice-rich terrain subject to thaw subsidence,
		surface	Т	10	monitoring of vertical movements by frost heave in
		subsidence in case of			winter and subsidence in summer are of critical
		ice loss in			importance. Field measurements may involve direct measurement towards borehole tube, optical survey
		ice-rich			differential GPS technology.
		permafrost.			
		Needs to be corrected in			
		order to get			
		the true			
		thaw depth.			
		Thaw depth			
		= active			
		layer thickness +			
		surface			
		subsidence			
		since			
		previous			
Standards		year			
and				-	Assessment of the status of the development of the
References		as for the Terr	restria	i Essential Clir	mate Variables - T7 - Permafrost and seasonally frozer
	ground.				

• Streletskiy, Dmitry and Biskaborn, Boris and Smith, Sharon L. and Noetzli, Jeannette and Vieira, Gonçalo and Schoeneich, Philippe (2017) GTN-P - Strategy and Implementation Plan 2016-2020. Technical Report. Global Terrestrial Network for Permafrost.

8.3.4 ECV Product: Rock Glacier Velocity [=RGV]

Name	Rock G	Rock Glacier Velocity (RGV)										
Definitio		Global dataset of surface velocity time series measured/computed on single rock glacier units										
n												
Unit Note	gnss s photog measur RGV is Time se Severa method Rock gl definition unit (e.	m/yr RGV can be measured/computed from terrestrial survey (e.g. repeated GNSS field campaigns, permanent GNSS stations) or remote sensing based approaches (e.g. InSAR, satellite-/air-/UAV-borne photogrammetry). The velocity values can be derived either from an annualized displacement measurement or from an annualized displacement computed from position measurements. RGV is defined for a single rock glacier unit that is expressed geomorphologically according to standards. Time series must be distinguished if they come from different units, even in a unique rock glacier system. Several time series can be measured/computed on the same rock glacier unit when derived from different methodologies. Rock glacier characteristics must be described according to the inventorying baseline concepts (Technical definition and standardized attributes of rock glaciers). In particular, the spatial connection to the upslope unit (e.g. connected to a glacier or not) leads to a specific evolution of rock glacier velocities and has to be documented.										
Item	Unit Metric [1] Value Derivation, References and Standards											
needed Horizont al Resoluti on		Spatial distribution of selected rock glaciers	G	Regional coverage	At least 30% of the active talus-connected and/or debrismantled slope-connected rock glaciers should be selected in a region, which is a part of a mountain range, in order to represent its climatic context. Only possible with remote sensing approaches.							
			В	Multiple sites in a defined regional context	Allows the definition of a regional trend.							
			Т	Isolated site	Continuous time series produced either from in situ measurements or remotely sensed measurements.							
Horizont al Resoluti on (2)		Spatial resolution of the measuremen t One value per selected rock glacier unit	G	Flow field	Velocity is computed/measured by aggregation over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows the best representation of the effective movement over the rock glacier unit.							
			В	Few discrete points	Velocity is computed/measured as an aggregation of few measurement points over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows a better representation of the effective movement over the rock glacier unit.							
					Т	Velocity value at a point	Velocity is computed/measured on a single point. The location should be consistent over time and be spatially representative of the rock glacier unit it is taking part (i.e. located within a recognized moving area).					
Vertical resolution		Not relevant	G B T									
Tempora I Resoluti on	yr	Frequency and Observation time window	G	Frequenc y = 1 yr Observati on time window = 1 yr	Measured/computed once a year. The observation time window is 1 year and consistent over time.							
			В	Frequenc y = 1 yr Observati on time window < 1 yr	Measured/computed once a year. The observation time window is shorter than 1 year (e.g. observation on summer period only). It should not be shorter than 1 month and must be consistent over time. Allows a better representation of the annual behavior.							
			Т	Frequenc y = 2-5 yrs Observati on time window > 1 yr	Frequency limited by an observation time window of 2-5 yrs. This time period corresponds to the common periodicity for aerial image coverages, and can be adapted according to regional/national specificities. Longer intervals are admissible for optical images, as well as for reconstructions from archives.							

Timeline			G	3 months	Minimum time needed for data processing.				
SS			В						
Require d Measure ment Uncertai nty (2-	e error of the velocity data	T G	1 year 5%	Allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the goal relative error of the velocity data.					
sigma)			В	10%	,				
			Т	20%	Maximal allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the target relative error of the velocity data.				
Stability	Overlapping	G	With overlap several yrs	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of these elements is changing, two times series must be derived for the selected rock glacier unit. If these two time series have an overlap of several years ensuring consistency, they can be merged into a single time series. The merging procedure must be documented.					
		В	With overlap 1 yr	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of these elements is changing, two time series must be derived for the selected rock glacier unit. If these two time series have an overlap of 1 year ensuring consistency, they can be merged into a single time series. The merging procedure must be documented.					
		Т	Without overlap	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of this element is changing without overlap, two time series must be derived for the selected rock glacier unit.					
Standar ds and		•	glaciers i	nventories ai	nd kinematics (https://ipa.arcticportal.org/activities/action-				
Referen ces	Standal - Techr (https://Baselin - Rock (https://	groups) Standards and definitions: - Technical definition and standardized attributes of rock glacier (https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_ Baseline_Concepts_Inventorying_Rock_Glaciers.pdf) - Rock glacier velocity (https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_ RockGlacierVelocity.pdf							

8.4 Snow

8.4.1 ECV Product: Snow-water equivalent

Name	Snow	-water equ	ıivalen	t							
Definition					ertical depth of the water that would be obtained if the snow						
		cover melted completely, which equates to the snow-cover mass per unit area.									
Unit	kg m⁻	kg m ⁻² – average over grid cell									
Note											
	Requirements										
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	km	n Size of grid cell	G	1	In complex terrain The resolution 1km refers to the homogeneous snow coverage in the flat field and high local variation in the mountain areas.						
			В	5							
			T	25							
Vertical	N/A	N/A	G								
Resolution			В								
			T								
Temporal	hour	time	G	6							
Resolution	S		В	24	The frequency "Daily" refers to the rapid changing cycle retrieved by satellite observation.						
			T	48							
Timeliness	day		G	3 hours							
			В	1							
			Т	10							
Required Measurem ent Uncertaint	mm	G	30 (For mountain areas 20%)	The Required Measurement Uncertainty (2-sigma) "10 mm" refers to the complexity of snow cover edge							
y (2- sigma)			В	40 (For mountain areas 30%)							
			Т	50 (For mountain areas 40%)							
Stability	mm		G								
			В								
			Т	10	The stability is recommended to be better than "10 mm".						
Standards and Reference s	of glo of glo from Land R Docu Carol	obal satellite oodison, B. passive mice -Atmosphere obinson, D.A ment (C-ATI ina, USA 28 turm, M., Ta	-derive and Wa rowave E Intera A. (201; BD) Nor pp. gras, B.	d snow productilker, A. (1994) satellite data, action, Utrecht B): Climate Dathern Hemisp	er, J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A review ets, Advances in Space Research, 50, 1007–1029. Canadian development and use of snow cover information B. Choudhuly et al. (ed), Passive Microwave Remote Sensing of VSP BV, 245-262. Ata Record Program (CDRP): Climate Algorithm Theoretical Basis there Snow Cover Extent, CDRPATBD-0156. Asheville, North Derksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow eata and Climate Classes. Jour. Hydromet. 11, 1380-1394.						

8.4.2 ECV Product: Snow Depth

Name	Snow	Snow Depth							
Definition	Snow	thickness is the	perpe	ndicular c	distance between snowpack surface and the underlying surface				
	(groui	(ground, sea ice, lake ice, ice sheets, on ice shelves, glaciers, etc.							
Unit	m – a	verage over a gr	id cell						
Note				_					
					quirements				
Item needed	Unit	Metric	[1]	Value	•				
Horizontal	km	Size of grid	G	1	In complex terrain				
Resolution		cell	B T	5 25	The week this a 1 km metans to the home remains a part of the				
			ı	25	The resolution 1km refers to the homogeneous snow coverage in the frat field and high local variation in the mountain areas.				
Vertical	mm	Depth of	G		in the frat field and high local variation in the mountain areas.				
Resolution	111111	snow - the	В						
Resolution		perpendicular	T						
		distance	•						
		between							
		snowpack							
		surface and							
		the							
		underlying ground							
Temporal	days	time	G	6					
Resolution	days	time	В	24					
			T	48	The frequency "Daily" refers to the rapid changing cycle				
					retrieved by satellite observation.				
Timeliness			G	3					
				hours					
			В	1					
			Τ	10					
Required	mm	2 Standard	G						
Measurement Uncertainty		Deviations	B T	1					
(2-sigma)			ı	ı					
Stability	mm		G	1					
			В	5					
			Т	25	The stability is recommended to be better than "10 mm".				
Standards	_	A T !		- 6 -	· · · · · · · · · · · · · · · · · · ·				
and					ster, J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A				
References		•			w products, Advances in Space Research, 50, 1007–1029.				
					24): Canadian development and use of snow cover information				
		•			a, B. Choudhuly et al. (ed), Passive Microwave Remote Sensing				
		•			echt: VSP BV, 245-262.				
					Data Record Program (CDRP): Climate Algorithm Theoretical				
				Northern	Hemisphere Snow Cover Extent, CDRPATBD-0156. Asheville,				
		n Carolina, USA 2							
					, Derksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow				
	Wate	r Equivalent Usir	ng Sno	w Depth	Data and Climate Classes. Jour. Hydromet. 11, 1380-1394.				

8.4.3 ECV Product: Area Covered by Snow

Name	Area	Area Covered by Snow									
Definition	open a	Snow cover refers to the % coverage solid surface (ground, ice sea ice, lake ice, glaciers etc) in open areas and on top of vegetation cover that is present, such as forest canopies covered by snow at a given time. Sometimes called "viewable snow".									
Unit		m ² – average over a grid cell									
Note	Area (2012)	Area covered by snow is observed in-situ and satellite observation (Robinson, 2013; Frei et al., 2012). The visible satellite identifies the snow cover with few millimeters of snow depth. The microwave radiometer can detect at first from few centimeters of snow depth.									
				Requ	irements						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	m	Size of grid cell	G	1	The resolution 1km refers to the homogeneous snow coverage in the frat field and high local variation in the mountain areas.						
			В	5							
			T	25							
Vertical			G								
Resolution			В								
		-	T	,							
Temporal Resolution	days	Frequency of	G	6	The foregoing #Delham arfame to the area let also are let						
Resolution		measurement	В	24	The frequency "Daily" refers to the rapid changing cycle retrieved by satellite observation.						
			T	48							
Timeliness			G	3 hours							
			В	1 10							
Doguirod	%	2 Standard	T G	10							
Required Measurement	70	Deviations	В								
Uncertainty		Deviations	T	5 %,	The Required Measurement Uncertainty (2-sigma) "5 %,						
(2-sigma)				local	local accuracy for 1/3 of 100m and 1km" refers to the						
				accuracy	complexity of snow cover edge.						
				for 1/3							
				of 100m							
Chalailina			_	and 1km							
Stability			G B	Missing							
			Т	4%							
Standards			-								
and					r, J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A						
References	revie	w of global satell	lite-de	rived snow	products, Advances in Space Research, 50, 1007–1029.						
					: Canadian development and use of snow cover information						
		•			B. Choudhuly et al. (ed), Passive Microwave Remote Sensing						
		•			nt: VSP BV, 245-262.						
		•			a Record Program (CDRP): Climate Algorithm Theoretical						
			-	Northern He	misphere Snow Cover Extent, CDRPATBD-0156. Asheville,						
		Carolina, USA 2									
					Derksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow						
	Wate	r Equivalent Usir	ng Sno	w Depth Da	ta and Climate Classes. Jour. Hydromet. 11, 1380-1394.						

9. BIOSPHERE

9.1 Above-ground biomass

9.1.1 ECV Product: Above-ground biomass

Name	Above-gr	ound biomas	SS							
Definition	Above-gro	Above-ground biomass is defined as the mass of live and/or dead organic matter in terrestrial vegetation								
Unit Note	Mass of dry weight in metric tons Definition can vary for different observations/products in terms including live and/or dead biomass, or for which vegetation compartments (woody, branches, and leaves). There are differences in what different satellite and in-situ observations actually measure. A clear definition needs to be provided with each measurement/product, and consistency is to be ensured, and ECV products might include flexibility in information to respond to different definition requirements (i.e. including different estimates for different compartments).									
				Requirer						
Item needed Horizontal Resolution	Unit M	Metric Pixel-size	[1] G	Value 10-100	Derivation, References and Standards This resolution reflects the need to have biomass data at the scale of human-induced disturbance. Suitable resolution can vary by ecozone; biomass is a rapidly varying quantity in space and the variance when moving to more detailed spatial resolutions is getting enormous and very hard to be captured efficiently by varying observation sources; especially for natural and tropical forests. Current understanding practices suggest a horizontal resolution of 0.25 ha (50x50 m) outside the (sub-)tropics and a horizontal resolution of 1 ha (100x100 m) in the tropics for global products. In					
					specific regions of interest and areas of active (forest/land) change higher resolution data can be helpful. Higher quality regional biomass maps can be used for the calibration and validation of global products.					
			В	100- 1000	This resolution is suitable for most regional vegetation and carbon modeling and assessing the impact of climate extremes. Deriving biomass estimates at resolutions coarser than the original one (i.e. from 10-100 m) can reduce uncertainties and provide more robust data; while reducing the spatial detail.					
			Т	> 1000	This resolution is suitable for global vegetation, carbon and climate models. Deriving biomass estimates at resolutions coarser than the original one (i.e. from 10-100 m) can reduce uncertainties and provide more robust data; while reducing the spatial detail.					
Vertical	N/A		G		Set to NA since ECV products provide estimates as total					
Resolution			B T		over a certain area without further vertical discrimination. There is however evolving products on tree/vegetation height and structure that are very related to biomass and could eventually be considered as a "third" dimension for biomass ECV products.					
Temporal Resolution	Years	Changes in biomass stocks (t/ha) over time (i.e. per year) are	G	Intra- annual	Biomass data more detailed than annual time steps are of value for assessing and modeling the impact of disturbances such as fires and forest degradation, and for seasonal variability in biomass productivity. There is also interest for more near-real time updates and estimates of forest biomass changes for (local) enforcement and accounting applications.					
		important to assess forest carbon gains and losses	В	1-2 years	Annual and bi-annual time steps are used by many models and carbon accounting applications requiring biomass data.					
			Т	5-10 yearly	One time is the minimum requirement but should be of high quality/low uncertainty. Temporal sampling increases are need to track changes and for long-term biomass trends information every 5-10 years is suitable.					
Timeliness	Years	The speed of delivery of biomass data determines their	G	Monthly- annual	Ideally, biomass measurements become available soon after the acquisition of the data for regular updating in regional hotspots, in case of major disturbances and climate extremes etc Speed of delivery of biomass information might come at the risk that full quality assurance and independent validation cannot be					

		6.1			
		usefulness for regular reporting, updating and enforceme nt application s	В	Annual-5 years Regular reprocess ing of	completed in near-real time as well. Global biomass measurements become available at least one (to a few) year(s) after the acquisition of the data and quality processing and ECV product derivation and validation, as well as long-term consistency is to be ensured. Model applications require long-term consistent biomass datasets that should take advantage of the whole historical data record. Providing improved and
				historical records	reprocessed historical data records consistent with the recent higher quality ECV estimates should be provided on a regular basis.
Required Measurement Uncertainty (2-sigma)	% (for relative) and tons (for absolute), for different biomass classes/r anges	Relative and absolute bias and confidence interval or RMSE, overall and by biomass class/rang e derived	G	10%	RMSE alone is not a strong indicator of uncertainty as it mixes systematic deviation (also referred to as bias, bias being the term used here) and precision. Bias is often the most significant error and varies among various biomass ranges. Ideally a full error distribution as a function of biomass should be provided but can hardly be achieved in practice. As minimum, a comparison of the ECV product with independent (insitu) reference data should provide uncertainty related to bias and precision among multiple biomass class/ranges.
		from using reference data of higher quality	В	20%	RMSE alone is not a strong indicator of uncertainty as it mixes systematic deviation (also referred to as bias, bias being the term used here) and precision. Bias is often the most significant error and varies among various biomass ranges. Ideally a full error distribution as a function of biomass should be provided but can hardly be achieved in practice. As minimum, a comparison of the ECV product with independent (insitu) reference data should provide uncertainty related to bias and precision among multiple biomass class/ranges.
			T	30%	RMSE alone is not a strong indicator of uncertainty as it mixes systematic deviation (also referred to as bias, bias being the term used here) and precision. Bias is often the most significant error and varies among various biomass ranges. Ideally a full error distribution as a function of biomass should be provided but can hardly be achieved in practice. As minimum, a comparison of the ECV product with independent (insitu) reference data should provide uncertainty related to bias and precision among multiple biomass class/ranges.
Stability	% (for relative) and tons (for absolute), for different	and absolute bias and confidence interval or RMSE, overall and by biomass	G	5%	As for uncertainty, stability should be assessed using both relative and absolute bias and RMSE. The stability can be assessed by multi-date independent validation/uncertainty assessments. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on biomass changes.
	biomass classes/r anges		В	10%	As for uncertainty, stability should be assessed using both relative and absolute bias and RMSE. The stability can be assessed by multi-date independent validation/uncertainty assessments. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on biomass changes.
			T	20%	As for uncertainty, stability should be assessed using both relative and absolute bias and RMSE. The stability can be assessed by multi-date independent validation/uncertainty assessments. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on biomass changes.
Standards and References					

9.2 Albedo

9.2.1 ECV Product: Spectral and Broadband (visible, near infrared and shortwave) DH & BH with associated spectral Bidirectional Reflectance Distribution Function (BRDF) parameters (required to derived albedo from reflectances).

Name	spectral	Spectral and Broadband (visible, near infrared and shortwave) DH & BH with associated spectral Bidirectional Reflectance Distribution Function (BRDF) parameters (required to derived albedo from reflectances).								
Definition	The land surface albedo is the ratio of the radiant flux reflected from Earth's surface to the incident flux. Each spectral/broadband value depends on natural variations and is highly variable in space and time as a result of terrestrial properties changes, and with illumination conditions.									
Unit	N/A									
Note	LENGTH C	F RECORD: Th	nreshol		arget: > 40 years					
			F47		ements					
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal Resolutio n	m		G	10	Due to the heterogeneous nature of terrestrial surfaces, having surface albedo at such scale will increase accuracy for further assimilation of local/regional climate model.					
			В							
			T	250	Enable assimilation in earth/climate model.					
Vertical	N/A		G							
Resolutio			В							
n			T							
Temporal Resolutio n	days		G	1	In order to be adequate in climate change services. Multi- angular instruments (including geostationary) and/or accumulation of daily data for BRDF parameters retrieval.					
			В							
			Т	10	Same as above as mono-angular instrument Enable assimilation in earth/climate model.					
Timelines	days		G	1	In order to be adequate in climate change services.					
S			В							
			Т	5	In order to be useful in NRT reanalysis.					
Required Measurem ent Uncertain ty (2- sigma)	urem rtain a)	One standard deviation or error covariance matrix, with associated	G	3% for values higher than 0.05; 0.0015 for smaller values.	"A change of 1% to the Earth's albedo has a radiative effect of 3.4 W/m²" Over snow-free and snow-covered land, climate, biogeochemical, hydrological, and weather forecast models require this uncertainty.					
		PDF shape	В							
		(functional form of estimated error distribution for the term).	Т	5% for values higher than 0.05; 0.0025 for smaller values.	See Ohring, et. al. 2005. https://journals.ametsoc.org/doi/pdf/10.1175/BAM S-86-9-1303					
Stability	change u of e surface c albedo e	A factor of uncertainti es to demonstrat e that the 'error' of	G B	< 1 %	'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005. https://journals.ametsoc.org/doi/pdf/10.1175/BAM S-86-9-1303). "					
over the available time period (per decade)	the product remains constant over the period, typically a decade or	Т	< 1.5 %	Same as above with Threshold value of uncertainty.						

	more (see backgroun d information).							
Standards								
and	Assimilation of surface albedo and vegetation states from satellite observations and their impact on							
Reference	numerical weather prediction, Remote Sensing of Environment, pp. 111-126.							
S	DOI:10.1016/j.rse.2015.03.009							

9.3 Evaporation from Land

9.3.1 ECV Product: Transpiration

Name		Transpiration								
Definition		The component of the total latent heat flux that corresponds to the vegetation consumption of water.								
Unit	W/m ²									
Note	the sam adequater	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For that reason, the uncertainty goals have been subjectively relaxed based on expert judgement.								
Manager and a dead	1114	D. 0 - 4 1 -	F47	Malara	Requirements					
I tem needed Horizontal	Unit km	Metric Size of	[1] G	Value 0.1	Derivation, References and Standards The length scales required to detect spatially heterogeneous					
Resolution	KIII	grid cell			responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).					
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).					
			T	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Vertical	N/A		G	N/A	N/A					
Resolution			В	N/A	N/A					
			T	N/A	N/A					
Temporal Resolution	hour	time	G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).					
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).					
			T	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Timeliness	Days		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).					
		В	30	Scales needed to make transpiration data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).						
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Required Measurement Uncertainty	%	relative root mean	G	20	This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al., 2017).					
(2-sigma)		square	В	40	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).					
			T	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Stability	W m ⁻ ² year ⁻		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).					
	1		В	-	-					
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).					
Standards and References	S., Ba Walise The fu climat 2618–	Idocchi, D. er, D., Purc Iture of ev e feedback 2626, doi:	, Towr dy, A apotra ss, agr 10.10	nsend, P. J., French nspiration icultural i 02/2016\	dleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., n, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: n: Global requirements for ecosystem functioning, carbon and management, and water resources, Water Resour. Res., 53(4), WR020175, 2017.					
	Estima doi: 10	ating Land 0.3390/rs1	Evapo 01117	ration at 20, 2018	hoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, liménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX					

LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.

- Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
- Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
- Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.
- Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.2 ECV Product: Interception Loss

Definition The component of the total latent heat flux that corresponds to the precipitation that is intercept by vegetation and evaporated directly. W/m² Note The requirements are analogous to those of the total latent heat flux, because the applications at the same. Several studies have shown, however, that the accuracy of the latent heat flux can stitude adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For the reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements Item needed Horizontal Resolution Km Size of G 0.1 The length scales required to detect spatially heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018). B 1 Scales needed to achieve a realistic partitioning of evaporation different components considering land cover heterogeneity	re II be
Unit W/m² Note The requirements are analogous to those of the total latent heat flux, because the applications at the same. Several studies have shown, however, that the accuracy of the latent heat flux can stit adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For the reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Item needed Unit Metric [1] Value Derivation, References and Standards	ll be
The requirements are analogous to those of the total latent heat flux, because the applications at the same. Several studies have shown, however, that the accuracy of the latent heat flux can stitute adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For the reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Item needed Unit Metric [1] Value Derivation, References and Standards	ll be
the same. Several studies have shown, however, that the accuracy of the latent heat flux can sti adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For the reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements Tem needed Unit Metric [1] Value Derivation, References and Standards	ll be
adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For the reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements Continuous	
transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For th reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements Item needed Unit Metric [1] Value Derivation, References and Standards Horizontal Resolution Size of grid cell (Fisher et al., 2017; Martens et al., 2018). B 1 Scales needed to achieve a realistic partitioning of evaporation	
Requirements Item needed Unit Metric [1] Value Derivation, References and Standards	
Item neededUnitMetric[1]ValueDerivation, References and StandardsHorizontal ResolutionkmSize of grid cellG 	
Horizontal Resolution Size of grid cell The length scales required to detect spatially heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018). Scales needed to achieve a realistic partitioning of evaporation	
Resolution grid cell responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018). B 1 Scales needed to achieve a realistic partitioning of evaporation	
B 1 Scales needed to achieve a realistic partitioning of evaporation	
OHIERAN COMPONENT CONTROL IN CONTROL INCOLUCIA IN CONTROL INCOLUCIA IN CONTROL IN CONTRO	into
(Talsma et al., 2019; Miralles et al., 2016).	
T 25 Current spatial resolution of global datasets (McCabe et al. 20	16;
Miralles et al., 2016), which has so far been deemed sufficient	for
climatological applications (Fisher et al., 2017).	
Vertical N/A G N/A N/A Resolution B N/A N/A	
T N/A N/A	
Temporal hour time G 1 Water management and agricultural applications require to so	ve
Resolution evaporation at timeframes associated with sub-daily irrigation	
decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes contro	lina
the evolution of the atmospheric boundary layer can be resolv	
(McCabe et al. 2016; Miralles et al., 2016).	
T 24 Typical temporal resolution of current global datasets, which h	as
so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Timeliness Days G 1 Water management and agricultural applications require data	n
near real-time (Fisher et al., 2017).	
B 30 Scales needed to make interception loss needed to (e.g.) impresseasonal weather or hydrological forecasts (expert judgement	
T 365 Current latency for multiple global datasets, which has so far I	
deemed sufficient for climatological applications (Fisher et al.,	
2017).	
Required % relative G 20 This will enable more efficient water management (Fisher et a 2017).	٠,
Uncertainty mean B 30 Intermediate compromise in which datasets can become useful	l as
(2-sigma) square a water management asset (expert judgement).	
error T 50 Current level of relative error (Talsma et al., 2018); this level so far been deemed sufficient for climatological applications	nas
(Fisher et al., 2017).	
Stability W m G 0.015 Approximately half of the current spread in the multi-datasets	
estimates of the global trend in evaporation (Zang et al., 2016)).
B T 0.03 Current estimates of the trend in the evaporation, but also the	
estimates of the spread in the estimates of these trends by	
different datasets (Zhang et al 2016).	
• Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook	S.,
References Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Wali	
D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The fu	
of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedba	icks,
agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626,	
doi:10.1002/2016WR020175, 2017.	
Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using CLEAM, Pomoto Sonsing, 10(11), 1720, 25.	
Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.	
 Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEW 	ΞX
LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcin	
data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.	
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Mart	ens,
B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.:	The

WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.

- Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
- Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.
- Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.3 ECV Product: Bare Soil Evaporation

Name	Bare Soil Evaporation									
Definition	The component of the total latent heat flux that corresponds to the direct evaporation of soil									
	moisture into the atmosphere.									
Unit	W/m²									
Note	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation,									
	transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For									
	reason,	reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km	Size of	G	0.1	The length scales required to detect spatially heterogeneous					
Resolution		grid cell			responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).					
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).					
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Vertical	N/A		G	N/A	N/A					
Resolution			B T	N/A	N/A					
Temporal	hour	time	G	N/A 1	N/A Water management and agricultural applications require to solve					
Resolution	riodi	ume			evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).					
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).					
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Timeliness	Days		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).					
			В	30	Scales needed to make bare soil evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).					
			T	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Required Measurement	%	relative root	G	20	This will enable more efficient water management (Fisher et al., 2017).					
Uncertainty (2-sigma)		mean square error	В	30	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).					
			T	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).					
Stability	W m ⁻ ² year ⁻		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).					
	1		В	-						
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).					
Standards	• Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S.,									
and References	Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks,									
	agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017. • Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.									
	 Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016. 									
	uata, Geosci. Middel Dev., 7(1), 203-303, doi: 10.3174/gitid-7-283-2010, 2010.									

- Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
- Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
- Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.
- Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.4 ECV Product: Sensible Heat Flux

Name	Sensible Heat Flux							
Definition	The lan	The land surface (terrestrial) sensible heat flux represents the conduction of heat between the land						
	surface	surface into the atmosphere.						
Unit	W/m ²							
Note	energy latent h Howeve	current sensible heat flux datasets based on satellite data are often derived as a residual from the hergy balance equation based on estimated latent heat fluxes. Due to their analogous use to that of tent heat fluxes by the climate and meteorology community, their user requirements are similar. Sowever, giver their lower immediate value for the agricultural and water management community, ome differences in the targeted goals are considered.						
					Requirements			
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal Resolution	km	Size of grid cell	G	1	Scales needed to achieve a realistic estimation considering land cover heterogeneity that may be useful to determine the role of sensible heat fluxes during extreme events (Miralles et al., 2019).			
			В	_	_			
			T	25	Current spatial resolution of global datasets, which has so far been deemed sufficient for climatological applications.			
Vertical	N/A		G	N/A	N/A			
Resolution			В	N/A	N/A			
			T	N/A	N/A			
Temporal Resolution	hour	ur time	G	1	Sub-daily processes are needed to represent the evolution of the atmospheric boundary layer during flash droughts or heatwaves (Miralles et al., 2019).			
			В	_	-			
			T	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications.			
Timeliness	Days		G	1	Accurate forecasting of short-term droughts and heatwaves requires data in near real-time (Miralles et al., 2019).			
			В	30	Scales needed to make sensible heat fluxes data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).			
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications.			
Required Measurement Uncertainty	%	relative root mean square error	G	10	This will involve an improved differentiation among ecosystems, and enable more efficient weather forecasts of extreme events (expert judgement).			
(2-sigma)			В	20	Intermediate compromise at which datasets can become useful as drought diagnostic (expert judgement).			
			Т	40	Current level of relative error that has so far been deemed sufficient for climatological applications.			
Stability	W m ⁻ ² year ⁻ ¹		G	0.015	Due to the scarcity of studies of sensible heat flux trends (Siemann et al., 2018), we refer to the same stability thresholds as for latent heat fluxes (and in the same units).			
			В	-	-			
			T	0.03	_			
Standards and References	•	 Siemann, A. L., Chaney, N. and Wood, E. F.: Development and Validation of a Long-Term, Global, Terrestrial Sensible Heat Flux Dataset, J. Climate, 31(15), 6073–6095, doi:10.1175/JCLI-D-17-0732.1, 2018. 						
	 Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019. 							

9.3.5 ECV Product: Latent Heat Flux

Timelines The land surface (or terrestrial) latent heat flux is the energy flux associated with the evaporation of cocurring over land surfaces, and it may comprise three main sources or individual components: bare soil evaporation (direct evaporation of water from soils), interception loss (evaporation of water forms soils), interception loss (evaporation of water forms soils), interception loss (evaporation into different components considering and sover heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martiens et al., 2018). B 1 Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017). Martiens et al., 2019; Miralies et al., 2016, Miralies et al., 2016, Miralies et al., 2017). Tomporal Resolution Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily present solve evaporation and agricultural applications require to a present solve evaporation of current global datasets, which has so far been deemed sufficient or climatological applications (Fisher et al., 2017). B 30 Scales needed to make evaporation data useful for early drought diag	Name	Latent Heat Flux							
bare soil evaporation (direct evaporation of water from soils), interception loss (evaporation of water from work canopies) and transpiration (plant water consumption), each of which are considered as sub-products. W/m² Note Requirements Item needed Will Metric Will Size of G. 0.1 The length scales required to detect spatially heterogeneous responses, particularly if agricultural applications are intender (Fisher et al., 2017). Warters et al., 2016). Will Will Will Will Will Will Will Wil									
from wet canoples) and transpiration (plant water consumption), each of which are considered as sub-products. Wim² Wim²									
Sub-products									
Note Nequired Negrotation Negretation Negretation References and Standards Negrotation									
Requirements Item needed Unit Metric [1] Value Derivation, References and Standards Horizontal Resolution Resolutio	Unit	·							
Name		-							
Resolution		l locit	Motein	[4]	Value	Davisation Defendance and Chandenda			
Persolution Personation									
Into different components considering land cover heterogeneit (Talsma et al., 2019: Miralles et al., 2016). T		KIII		U	0.1	responses, particularly if agricultural applications are intended			
Vertical Resolution N/A N/A N/A N/A N/A N/A N/A N/				В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).			
Negrotation N/A G N/A N/A N/A				Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed			
Temporal Resolution Temporal Resolution	Vertical	N/A		G	N/A				
Temporal Resolution	Resolution								
Solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B	Tamanamal	ha	Alma a						
controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017). B 30 Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement). T 365 Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Required Measurement Uncertainty (2-sigma) **Required Measurement Uncertainty (2-sigma) **Fisher et al., 2017) **Fisher et al., 2017 **Fisher et al., 2017 **Fisher et al., 2017 **Fisher et al., 2017		nour	time	G	1	solve evaporation at timeframes associated with sub-daily			
Timeliness Days G 1 Water management and agricultural applications (Fisher et al., 2017). B 30 Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement). T 365 Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher al., 2017). Required Measurement Uncertainty (2-sigma) Required Weasurement Square error B 20 Intermediate compromise in which datasets can become useful as of a soft applications (Fisher al., 2017). T 40 Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Stability W m 2 G 0.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). B - T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different capacity. P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Wallser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				В	6	controlling the evolution of the atmospheric boundary layer can			
Timeliness Days G 1 Water management and agricultural applications require data in near real-time (Fisher et al., 2017). B 30 Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement). T 365 Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher al., 2017). Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher al., 2017). This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et a 2017). T 40 Intermediate compromise in which datasets can become usefu as drought diagnostic or as a water management asset (experividgement). T 40 Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Stability W m ² year ⁻¹ G 0.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). * Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				T	24	has so far been deemed sufficient for climatological			
Required Measurement Uncertainty (2-sigma) W m 2 year-1 Stability W m 2 year-1 Stability W m 2 year-1 Stability W m 3 G C 0.015 Approximately half of the current spread in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References References B 30 Scales needed to make evaporation data useful for early drought diagnostic or to Improve seasonal weather forecasts (expert judgement). T 365 Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher al., 2017). This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al. 2017). T 40 Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Stability W m 2 year-1 G 0.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). B - T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi: 10.1002/2016WR020175, 2017.	Timeliness	Days		G	1	Water management and agricultural applications require data			
Been deemed sufficient for climatological applications (Fisher al., 2017). This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et a 2017). Intermediate compromise in which datasets can become usefu as drought diagnostic or as a water management asset (experigudgement). The stability of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). Brace of the spread in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al. 2016). Standards and References Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Wallser of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi: 10.1002/2016WR020175, 2017.				В	30	Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts			
Measurement Uncertainty (2-sigma) root mean square error B 20 Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (experigudgement). T 40 Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Stability W m- y year-1 G 0.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). B T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et			
Stability W m 2 year-1 G O.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Stability Stability W m 2 year-1 G O.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). B - T O.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.	Measurement Uncertainty		root mean square	G	10	water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al.,			
T 40 Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017). Stability W m ⁻² year ⁻¹ G 0.015 Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016). B T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				В	20	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).			
Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				Т	40	5			
T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.	Stability			G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al.,			
estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016). Standards and References • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.					-				
• Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S. Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.				Т	0.03	estimates of the spread in the estimates of these trends by			
D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedback agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.	and	 Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, JP., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017. Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, 							
	References								
Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25,									
 doi:10.3390/rs10111720, 2018. Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing 		• Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX							

data, Geosci. Model Dev., 9(1), 283-305, doi:10.5194/gmd-9-283-2016, 2016.

- Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.
- Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.
- Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.
- Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.4 Fire

9.4.1 ECV Product: Burned area

Name	Burnt area							
Definition	Burned area means the area of burned vegetation. X_area means the horizontal area occupied by X							
	within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of region.							
Unit	m ²							
Note								
Item	Unit Metric [1] Valu Derivation, References and Standards							
needed	Onit	Wictific	L 13	e	Derivation, References and Standards			
Horizontal Resolution	m	minimum mapping unit: length of the side of pixel	G	30	This resolution is mostly oriented towards regional studies, particularly in those regions were small fires (< 100 ha) have an important share in fire occurrence. The importance of small fires has been evidenced in recent papers (Roteta et al. 2019, among others)			
			В	250	Products based on higher resolution MODIS products have shown higher sensitivity to small fires, even though coarse resolution RS products still miss most small fires (Chuvieco et al. 2018)			
			T	25.00 0	Most climate modelers work at coarse resolution grids, 025 d is the most common. A recent review of users of RS BA products show that most of them work at this level of detail (Heil & Pettinari, 2021). A review of users of BA products can be found in Mouillot et al. 2014 and Chuvieco et al. 2019			
Vertical	N/A		G					
Resolution			B T					
Temporal Resolution		Minimum temporal period to which the BA product refers	G	1	Mostly for atmospheric modelers. A questionnaire to atmospheric and carbon modelers done in 2011 suggested 1-2 days https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, but it was recently updated to 1 day or even 6 hours by Heil & Pettinari, 2021			
			В	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
			T	30	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
Timeliness	Day	Days when the BA product is accessibl e after fires	G	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
			В	120	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
		occurred	Т	360	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
Product Accuracy	%	Average omission and commissi on errors	G	5	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
			В	15	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
			Т	25	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			

Required Measurem ent Uncertaint y (2- sigma)	Accuracy	Standard deviation around the estimate d burned area	G B T	Missin g Missin g	Even though specific thresholds have not been suggested in previous user requirement surveys, they have indicated the need to quantify those uncertainties by considering the different phases of BA product development, preferably expressed as standard errors around the estimated burned area. Uncertainty around the temporal reporting accuracy should also be provided. See Heil & Pettinari, 2021
Stability	Measures of omission and commissi on over the available time period	Assessm ent of whether a monotoni c trend exists based on the slope (b) of the relations hip between an accuracy measure (m) and time (t).	(Padilla should using nonpa accura (Conor that ac	a et al. 2 be more the slope rametric cy (i.e. b ver 1999 ccuracy r	metrics of stability have been published in the last few years 014, but it is not yet an international agreement on which one is suitable for measuring BA consistency. Padilla et al., proposed is b of change of accuracy per year is estimated through a linear regression. In addition, the temporal monotonic trend of of different than zero) is tested with the Kendall's tau statistic; Section 5.4). A statistically significant test result would indicate measure m presents temporal instability, as it would have a ease or decrease over time.
Standards					

Standards and Reference s

- Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., & Plummer, S. (2018). Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. *Earth Systems Science Data*, 10, 2015-2031.
- Chuvieco, E., Mouillot, F., van der Werf, G.R., San Miguel, J., Tanasse, M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A., Hawbaker, T.J., & Giglio, L. (2019). Historical background and current developments for mapping burned area from satellite Earth observation. *Remote Sensing of Environment*, 225, 45-64.
- Heil, A, and Pettinari, L. (2021). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, v. 7.2 https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v7.2.pdf
- Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. *International Journal of Applied Earth Observation and Geoinformation*, 26, 64-79.
- Padilla, M., Stehman, S.V., Litago, J., & Chuvieco, E. (2014). Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products. *Remote Sensing*, *6*, 2050-2068.
- Roteta, E., Bastarrika, A., Storm, T., & Chuvieco, E. (2019). Development of a Sentinel-2 burned area algorithm: generation of a small fire database for northern hemisphere tropical Africa *Remote Sensing of Environment, 222,* 1-17.

NOTE: Until recently efforts to provide uncertainty estimates associated with burnt area products were rare. The ones that do, provide estimates based on probabilities of detection or on a quality type flag. As for other ECVs, the uncertainty of a particular variable should indicate the amount, in the same units of the variable, that is associated with an error margin. But because BA products come in the form of a binary maps, indicating if a pixel is bunt or not, the only possible value for uncertainty is 100%, i.e., the pixel did not burn when it did or burned when it did. Linking the algorithm detection probability with uncertainty can be misleading, as it does not reflect an actual uncertainty in terms of area. Instead it indicates a "detection confidence" and should be referred as such. However in case of aggregated BA products (in degrees of lat/long), the uncertainty of a burnt can be calculated the evaluating the areal outcome difference between higher and lower detection confidence settings. In this case, the uncertainty outcome would be an estimate in area units that reflects, in some way, the sensibility of the algorithm to the initial conditions.

Ideally, uncertainty should be done by tracking the error propagation in all steps of the algorithm. To comply with this rule, future BA product should consider that individual pixels can also not burn entirely. They should be aimed at capturing the % of area that burnt inside of the pixel [in m2]. Instead of asking if a pixel burned or not we should be asking how much did it burnt. By doing so, product uncertainty can then be easily derived from uncertainty propagation in the algorithm.

9.4.2 ECV Product: Active Fires

Name	Active Fires							
Definition	Presence of a temporal thermal anomaly within a grid cell. Those thermal anomalies that are permanent should be linked to other sources of thermal emission (volcanos, gas flaring, industrial or power plants). Generally, the active fire maps are defined by the date/hour when the thermal anomaly was detected.							
Unit	m ²							
Note	Requirements							
Item	Unit	Metric	[1]	Value	Derivation, References and Standards			
needed	Onne	Wietrio	L.1	Value	Derivation, References and Standards			
Horizontal Resolution	m	minimum mapping unit:	G	50	This resolution is mostly required by fire managers and fire extinction services			
		length of the side	В	200	Useful for fire risk assessment and better understanding of fire risk factors			
		of pixel	Т	25.000	Most climate modelers work at coarse resolution grids, 025 d is the most common.			
Vertical	N/A		G					
Resolution			B T					
Temporal Resolution	Minutes	Minimum temporal period to	G	15	For fire management purposes, active fire detection should be done very frequently. Atmospheric modelers also require updated information on fire activity			
		which	В	120	Atmospheric modelers			
		the AF product refers	Т	1 day	Atmospheric and carbon modelers			
Timeliness	Timeliness Minutes	Time lapse between satellite	G	10	Quick information is necessary to use AF as an early warning of fire activity			
			В	60	Quick information is necessary to use AF as an early warning of fire activity			
		overpass and AF availabilit y	Т	1 day	Quick information is necessary to use AF for monitoring fire activity			
Product	%	Average	G	5	These values refer to BA products, based on a questionnaire			
Accuracy		omission	В	15	to atmospheric and carbon modelers done in 2011:			
		and commissi on errors	T	25	https://climate.esa.int/media/documents/Fire_cci_D1.1_UR _v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021			
Required	Accuracy	Standard	G	Missing	Missing			
Measurem ent		error of fire	В	Missing	Missing			
Uncertaint y (2- sigma)		detection	Т	Missing	Missing			
Stability	Measures of omission and commissi on over the available time period	Assessm ent of whether a monotoni c trend exists based on the slope (b) of the relations hip between an accuracy measure (m) and time (t).	Some potential metrics of stability have been published in the last few years (Padilla et al. 2014, but it is not yet an international agreement on which one should be more suitable for measuring BA consistency. Padilla et al., proposed using the slope b of change of accuracy per year is estimated through a nonparametric linear regression. In addition, the temporal monotonic trend of accuracy (i.e. b different than zero) is tested with the Kendall's tau statistic (Conover 1999; Section 5.4). A statistically significant test result would indicate that accuracy measure m presents temporal instability, as it would have a significant increase or decrease over time.					
Standards and Reference s	 Heil, A, and Pettinari, L. (2021). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, v. 7.2 https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v7.2.pdf Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user 							

needs and recommendations for future developments. *International Journal of Applied Earth Observation and Geoinformation, 26,* 64-79.

9.4.3 ECV Product: Combustion completeness (CC) / also termed Burning efficiency (BE)

Name	Combustion completeness (CC) / also termed Burning efficiency (BE)								
Definition		Proportion of pre-fire biomass consumed by the fire. unitless							
Unit		ablo is a re	auleite	for acting	nating fire emissions. Currently is based on weather data as a proxy				
Note	of fire se condition The requ	of fire severity and CC, or is estimated based on controlled fires, which rarely described real burning conditions. The requirements are similar to burned area, since CC is another component to estimate fire emissions using bottom-up approaches							
	using bot	ttom-up ap	proach	es					
Item	Unit	Matria	F4.1	Valu	Requirements Derivation, References and Standards				
needed	Offic	Metric	[1]	e valu	Delivation, References and Standards				
Horizontal Resolution	m	minimu m mappin g unit: length of the	G	30	This resolution is mostly oriented towards regional studies, particularly in those regions were small fires (< 100 ha) have an important share in fire occurrence. The importance of small fires has been evidenced in recent papers (Roteta et al. 2019, among others)				
		side of pixel	В	250	Products based on higher resolution MODIS products have shown higher sensitivity to small fires,				
			Т	25.00 0	Most climate modelers work at coarse resolution grids, 025 d is the most common (Heil & Pettinari, 2021). A recent paper con fuel consumed used coarse resolution passive microwave data (Giuseppe et al., 2021)				
Vertical	N/A		G	NA					
Resolution			B T	NA NA					
Temporal Resolution	Day	Minimu m tempor al period	G	1	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2 _xkSTbGK.pdf, updated in Heil & Pettinari, 2021. This document refers to BA, not properly to CC.				
	to which the CC product	to which the CC product	В	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2 _xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
		refers	Т	30	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2 _xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
Timeliness	Day	Days when the CC product	G	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
		is accessi ble after	В	120	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2 _xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
		fires occurre d	Т	360	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v5.2 _xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
Product Accuracy	unitless	Average deviatio	G	Missi ng	Missing				
		n betwee	В	Missi ng	Missing				
		Missi ng	Missing						
Required Measurem	Accurac y	Standar d	G	Missi ng	Missing				
ent Uncertaint		deviatio n	В	Missi ng	Missing				
y (2- sigma)		around the estimat ed	T	Missi ng	Missing				

		CC	
Stability	Measur es of accurac y over the availabl e time period	Assess ment of whether a trends	Similar to those used for burned area
Standards and References	Chuvied Yebra, M. current de Environm Heil, A, v. 7.2 http Di Gius Approach Research Roteta, area algore	, Padilla, M evelopmen ent, 225, 4 and Pettir ps://climat eppe, F., E to Estimat Letters, 48 E., Bastar rithm: gen	dillot, F., van der Werf, G.R., San Miguel, J., Tanasse, M., Koutsias, N., García, M., I., Gitas, I., Heil, A., Hawbaker, T.J., & Giglio, L. (2019). Historical background and its for mapping burned area from satellite Earth observation. <i>Remote Sensing of</i> 45-64. hari, L. (2021). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, ite.esa.int/media/documents/Fire_cci_D1.1_URD_v7.2.pdf Benedetti, A., Coughlan, R., Vitolo, C., & Vuckovic, M. (2021). A Global Bottom-Up ite Fuel Consumed by Fires Using Above Ground Biomass Observations. Geophysical 3, e2021GL095452. Brika, A., Storm, T., & Chuvieco, E. (2019). Development of a Sentinel-2 burned iteration of a small fire database for northern hemisphere tropical Africa <i>Remote ment, 222</i> , 1-17.

9.4.4 ECV Product: Fire Radiative Power (FRP)

Name	Fire Radiative Power (FRP)								
Definition					Commonly it is expressed in W/m². This variable is a function				
	of actual burned.	temperature c	of the a	ctive fire a	t the satellite overpass and the proportion of the grid cell being				
Unit	W/m ²								
Note									
Itom	Limit	Motrio	F4.1		Desiration Deferences and Standards				
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	m	minimum mapping unit: length	G	50	This resolution is mostly required by fire managers and fire extinction services				
		of the side of pixel	В	200	Useful for fire risk assessment and better understanding of fire risk factors				
		·	Т	25.000	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD _v5.2_xkSTbGK.pdf, updated in Heil & Pettinari, 2021				
Vertical	N/A		G						
Resolution			В						
Tomperel	Minutes	Minimum	T	15	For fire management numbers, eating fire detection about				
Temporal Resolution	Minutes	Minimum temporal period to	G	15	For fire management purposes, active fire detection should be done very frequently. Atmospheric modelers also require updated information on fire activity				
		which the	В	120	Atmospheric modelers				
		FRP product refers	Т	1 day	Atmospheric and carbon modelers				
Timeliness	Minutes	Time lapse between	G	10	Quick information is necessary to use FRP as an early warning of fire activity				
	satellite overpass	В	60	Quick information is necessary to use FRP as an early warning of fire activity					
		and AF availability	Т	1 day	Quick information is necessary to use FRP as an early warning of fire activity				
Product	W/m2	Average	G	Missing	Missing				
Accuracy		deviation	В	Missing	Missing				
		between estimated and	Т	Missing	Missing				
		observed FRP							
Required	Accurac	Standard	G	Missing	Missing				
Measurem	У	deviation	В	Missing	Missing				
ent Uncertaint y (2- sigma)		around the estimated FRP	Т	Missing	Missing				
Stability	Measur	Assessmen	Simila	ar to those	used for burned area				
	es of accurac y over the availabl e time period	t of whether a monotonic trend exists based on the slope (b) of the relationship between an accuracy measure (m) and	Similar to those used for burned area						
		time (t).		_					
Standards and References	(2016).		ng fuel	consumpti	, J.W., van Leeuwen, T.T., Wooster, M.J., & Lehmann, C.E.R. on dynamics in the tropics and subtropics assessed from				
	• Heil, A	, and Pettinari	, L. (20	21). ESA C	CCI ECV Fire Disturbance: D1.1 User requirements document, uments/Fire_cci_D1.1_URD_v7.2.pdf				
	 Roteta 	, E., Bastarrika	a, A., S	torm, T., &	Chuvieco, E. (2019). Development of a Sentinel-2 burned e database for northern hemisphere tropical Africa <i>Remote</i>				

Sensing of Environment, 222, 1-17.

9.5 Fraction of absorbed photosynthetically active radiation (FAPAR)

9.5.1 ECV Product: Fraction of Absorbed Photosynthetically Active Radiation

Name	Fraction	Fraction of Absorbed Photosynthetically Active Radiation							
Definition	FAPAR is of the surface (assuming form of is angularly FAPAR ref	FAPAR is defined as the fraction of photosynthetically active radiation (PAR; solar radiation reaching the surface in the 0.4-0.7µm spectral region) that is absorbed by vegetation canopy. Both black-sky (assuming only direct radiation) and white-sky (assuming that all the incoming radiation is in the form of isotropic diffuse radiation) FAPAR values may be considered. Similarly FAPAR can also be angularly integrated or instantaneous (i.e., at the actual sun position of measurement). Leaves-only FAPAR refers to the fraction of PAR radiation absorbed by live leaves only, i.e., contributing to the photosynthetic activity within leaf cells.							
Note		OF RECORD: Th	nreshol		rs; Target: >40 years				
Item needed	Unit Metric [1] Value Derivation, References and Standards								
Horizontal Resolution	m	Wettie	G	10	FAPAR plays a critical role in assessing the primary productivity of canopies, the associated fixation of atmospheric CO ₂ and the energy balance of the surface. Application at 10 m; Climate Adaptation, CO ₂ fluxnet up scaling. Best practices http://www.qa4ecv.eu/sites/default/files/D4.2.pdf				
			В	250	Scale needed for regional and global climate modeling. Land surface and Earth System Model evaluation of LAI is often completed at 1km spatial resolution for global assessments, so it would be useful to include these coarser resolution data.				
Mantingl	NI / A		T	1000	For NWP (ECMWF)				
Vertical Resolution	N/A		G	0.1	Every 1/10th of the canopy thickness to improve evaluation of vegetation LAI within Land surface/Earth System Models				
			В	1	Any specified level through the canopy				
Temporal Resolution		G	1	Canopy mean When assimilated by model, this value corresponds to the climate model temporal resolution. In order to derive a better phenology accuracy.					
			В	10	When we're for every or easy to read the control				
			Т	10	When using for crops or ecosytems modeling, or Land Surface / Earth System Model evaluation.				
Timeliness	day		G	1	In order to be useful in climate change services.				
			В	5	In order to be useful in environmental change services. Can be longer (~months) for historic climate/environmental change assessments.				
			Т	10	In order to be useful in environmental change services.				
Required Measurement Uncertainty (2-sigma)	Measurement standard deviation	G	5% for values higher than 0.05 And 0.0025 for values smaller	The values were assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.					
		form of estimated	B T	10%	The threshold value of uncertainty was assessed through				
			for values higher than 0.05; and 0.0025 for values smaller	The threshold value of uncertainty was assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.					
Stability	Rate of change over the	Assessment of whether a trend	G	< 1.5%	'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005.). In the case that we have data over 10 years (= one decade)				

	available time period (% per decade)	exists with respect to reference data, taken into the definition, i.e. white-			N=10 and U=5% Assuming U constant along the period It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S=0.3*U = 0.31 * 10/100.0 = 1.5 % This number should be smaller than expected FAPAR trend.
		sky or	В		
		black-sky and total versus 'green foliage'.	T	< 3%	Same as above with U = 10%
Standards and References	LENGTH O	F RECORD: Th	ireshol	d: 20 year	rs; Target: > 40 years

9.6 Land cover

9.6.1 ECV Product: Maps of key IPCC land classes, related changes and land management types

Name	Maps of key	/ IPCC land cl	asses.	related cl	nanges and land management types		
Definition					physical cover on the Earth's surface		
Unit	Primary units classifiers (e.	s are categorie	s (binar ree car	ry variables nopy cover	s such as forest or cropland) or continuous variables in percent). Secondary outputs include surface area of		
Note	The observed (bio)- physical cover on the Earth's surface can also be variable in time due to land changes and phenology. Crucially, this table refers to change products.						
Item needed	Unit	Metric		Requirem Value	Derivation, References and Standards		
Horizontal	M / degree	Size of grid	[1] G	10-300	This would allow finer detail to be observed, and for		
Resolution	Wi / degree	cell	В	300-	land management to be assessed at smaller units. For most climate users, 300 m is sufficient.		
			В	1000	To most climate users, 500 m is sumeent.		
			Т	1000-1 degree	For modelling for example at the global scale, this resolution is sufficient. More detailed land cover descriptions are more		
					targeted for regional applications in climate change mitigation and adaptation purposes.		
Vertical Resolution	discriminatio	n. There is cur	rently r	no consider	tes as total over a certain area with further vertical ation of the third dimension for land ECV products ats) often use, among others, a minimum height criteria.		
Temporal Resolution			G	Monthly	Allows regrowth, phenology, changes in water extent related to seasonality to be detected.		
			В	Yearly	Inter-annual changes can be detected. Suitable for most international and national policy reporting cycles.		
T			T	5- yearly	Suitable scale for longer-term mapping, related to broader land cover change dynamics.		
Timeliness			G	Monthly	Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends.		
			В	Yearly	Policy makers will be able to develop and assess policies based on these changes.		
	V		T	5- yearly	As above.		
Temporal Extent (Time	Year		G	>100 years	For modelling over longer histories historic data are required.		
span)			В	50 years	Near historic changes can be assessed.		
Dominod	% for	Duine on v	Т	30 years	Only current maps using the current generation of satellites are used.		
Required Measurement	% for accuracy	Primary: overall	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies.		
Uncertainty (2-sigma)	ainty and errors map of omission accuracy and and error	accuracy and errors of omission	В	15	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy -for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher.		
	hectares for area estimates incl. 95 % confidence intervals	for individual land cover categories and types of change (incl. confidence interval). Secondary: bias for area estimates (incl. confidence	Т	25	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher		

		intervals)			
Stability	% incl. 95 % confidence intervals	Primary: errors of	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
			В	15	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
			T	25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
Standards and References					,

9.6.2 ECV Product: Maps of High-Resolution Land Cover

Name	Maps of High-Resolution Land Cover								
Definition					physical cover on the Earth's surface				
Unit					es such as forest or cropland) or continuous variables				
	•	.g. Traction of t se types and la			r in percent). Secondary outputs include surface area of anges (in ha)				
Note					arth's surface can also be variable in time due to land				
	changes and	changes and phenology.							
The control of the design of t	11-11	B. 0 - 4 - 1 -	F4.1	Requiren					
I tem needed Horizontal	Unit m	Metric Size of grid	[1] G	Value <10	Derivation, References and Standards Suitable for local land managers - specifically for				
Resolution	'''	cell	0	110	targeted applications in climate change mitigation and adaptation. Small features such as green spaces within cities are visible and changes to water extent (in particular change in river courses) also become visible at this resolution. More detailed land cover descriptions are more.				
			В	10-30	Can identify human induced land change at regional levels. Most features of interest are visible, and broad changes captured.				
			Т	30-100	Broad landscape typologies and changes across landscapes are visible, so suitable for landscape management.				
Vertical	Sot to NA sta	sco ECV nasal	to n=	vido ostis	atos as total over a certain erea with further westign				
Resolution					ates as total over a certain area with further vertical eration of the third dimension for land ECV products				
	though some				ests) often use, among others, a minimum height criteria				
Temporal	Month /		G	Monthly	6				
Resolution	Year		В	Yearly	related to seasonality to be detected. Inter-annual changes can be detected				
			T	5-	Suitable scale for longer-term mapping, related to				
			·	yearly	broader land cover change dynamics.				
Timeliness	Month / Year		G	1-2 Months	Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.				
			В	Yearly	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.				
			Т	5- yearly	As above.				
Temporal Extent (Time span)	Year		G	-30-50	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps) – where more recent high resolution data sources (Landsat, Sentinel) are not available.				
			В	10-30	Historic changes can be assessed for the Earth observation data which are required at this resolution.				
			Т	One	Only current and potentially future data are available,				
				time only (0)	but this is useful for those who require current status products, for example for modelling, and static assessments.				
Required Measurement Uncertainty (2-sigma)	gma) accuracy overal and errors map of omission accuracy and errors and and errors and and ercommission and and hectares comm for area for estimates incl. 95 % land confidence intervals and ty	accuracy	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.				
		commission	В	35	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy -for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product. This threshold would be suitable for maximum				
		(incl.			commission/omission error for individual categories.				

		confidence interval). Secondary: bias for area estimates (incl. confidence intervals)			Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
Stability	% incl. 95 % confidence intervals	Primary: G errors of	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
	categories and types of change (incl. confidence		15	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.	
			Т	25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
Standards and References					

9.6.3 ECV Product: Land Cover

Name	Land Cover							
Name Definition	Land Cover Land cover is defined as the observed (bio)- physical cover on the Earth's surface							
Unit	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha). UN/FAO Land Cover Classification System (LCCS) + C3/C4 sub-classification should be used with cross-walking tables to other common classifications							
Note	changes and		ai cove		h's surface can also be variable in time due to land			
			F 4.7	Requiremen				
Item needed Horizontal	Unit	Metric	[1] G	Value 100-300	Derivation, References and Standards Most climate users are satisfied by a herizontal			
Resolution	m	Size of grid cell			Most climate users are satisfied by a horizontal resolution of 300m if they can be provided for long time spans.			
			B T	300-1 km > 1 km	Suitable for regional (climate) modeling. Suitable for global (climate) modelers.			
Vertical Resolution	discriminatio	n. There is cur	cts pro rently	vide estimate no considerat	s as total over a certain area with further vertical tion of the third dimension for land ECV products of often use, among others, a minimum height criteria			
Temporal Resolution	Month / Year	time	G	Monthly	Allows regrowth, phenology, changes in water extent related to seasonality to be detected.			
			В	Yearly	Inter-annual changes can be detected.			
The state			T	5-yearly	Suitable scale for longer-term mapping, related to broader land cover change dynamics.			
Timeliness	Month / Year		G	Seasonally (3 months)	Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.			
			В	Yearly	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.			
	.,		T	5-yearly	As above.			
Temporal Extent (Time span)	Year		G	50+ years	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps)			
			В	10-50	Historic changes can be assessed for the Earth observation era.			
			T	One time only (0)	Only current and potentially future data are available, but this is useful for those who require current status products, for example for modelling, and static assessments.			
Required Measurement Uncertainty (2-sigma)	% for accuracy and errors of omission and	Primary: overall map accuracy and errors	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.			
	commission and and hectares commi for area estimates individ incl. 95 % land complete confidence intervals and type of characteristic confidering second bias for area estimate (incl. confidering confidering confidering confidering second bias for area estimate (incl. confidering co	commission	В	20	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy -for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.			
		of change (incl. confidence interval). Secondary: bias for area estimates	T	35	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.			

Stability	% incl. 95 % confidence intervals	Primary: errors of omission and commission for individual land cover categories and types of change (incl. confidence interval)	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
			В	15	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
			Т	25	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
Standards and References					

9.7 Land Temperature

9.7.1 ECV Product: Land Surface Temperature (LST)

Name Definition	Land Surface Temperature Land Surface Temperature (LST) is a measure of how hot or cold the surface of the Earth would feel								
Definition	to the to spacebo the ense importar	to the touch. When derived from radiometric measurements of ground-based, airborne, and spaceborne remote sensing instruments, LST is the aggregated radiometric surface temperature of the ensemble of components within the sensor field of view. From a climate perspective, LST is important for evaluating land surface and land-atmosphere exchange processes, constraining surface energy budgets and model parameters, and providing observations of surface temperature change							
1 Local		both globally and in key regions.							
Unit Note		K – average over grid cell ECV Requirements derived from 77 responses from an online user survey of LST climate community							
11010		CI Project	u 11 0111	, , , , tospe	shoot formal discrete and salvey of Let diffiate community				
Item needed	Requirements								
Horizontal	Unit km	Metric Size of grid	[1] G	Value < 1	Derivation, References and Standards Reflect the primary application of the climate users in the				
Resolution		cell	B T	< 1	survey. The three most popular primary applications are model evaluation, evapotranspiration/vegetation or crop monitoring and urban climate, all of which may quite feasibly require data with a spatial resolution of 1 km or better. Only polar orbiting satellites can currently provide data at these resolutions.				
Vertical	N/A		G						
Resolution			В						
Temporal	h		T G	< 1	Only Geostationary data can provide data at these				
Resolution	"		В	1	resolutions but these are regional datasets. In contrast polar orbiting satellites cover the whole globe but are restricted to day/night temporal resolution.				
			Т	6	Very nearly met by day/night temporal resolution from polar orbiting satellite, which satisfies 70% of climate users in survey.				
Timeliness	N/A		G B		Note a curvey of 90 pen elimete users for timeliness from				
			T		Note, a survey of 80 non-climate users for timeliness from the ESA DUE GlobTemperature Project revealed the a "threshold" need of 1 month for long-term data records, and a "breakthrough" of 48 hours for long-term data records.				
Required		An estimate of	G	< 1 K	This is the required total uncertainty per pixel combining				
Measurement Uncertainty (2-sigma)		the expected spread of the distribution of possible values	B T	< 1 K < 1 K	the four groups of uncertainty components: random, locally correlated atmospheric, locally correlated surface, and large scale systematic. There is a requirement for knowledge on correlation length scales				
Stability	K per	Assessment of	G	0.1	For climate modeling community long-term product				
Standards	decade	whether a monotonic trend exists with respect to ground-based Fiducial Reference Measurements or related ECV datasets (such as near-surface air temperature)	B T	0.2	stability is noted as high priority. Temporal stability of the LST products need to be sufficient for global and regional trends in LST anomalies to be calculated.				
and References	Ghen Defining 10.3390	 Bulgin, C., & Merchant, C. (2016). DUE GlobTemperature Requirements Baseline Document. Ghent, D., Veal, K., Trent, T., Dodd, E., Sembhi, H., and Remedios, J. (2019). A New Approach to Defining Uncertainties for MODIS Land Surface Temperature. Remote Sensing, 11, 1021. doi: 10.3390/rs11091021 							
	relations years of	ship between near	r-surfa SR ser	ce air ten ries. Jour	., & Remedios, J. J. (2017). A spatiotemporal analysis of the nperature and satellite land surface temperatures using 17 nal of Geophysical Research: Atmospheres, 122(17), 9185-				
					ocument, Reference LST-CCI-D1.1-URD - i1r0				

- LST CCI (2019) End-to-End ECV Uncertainty Budget Document, Reference LST-CCI-D2.3-E3UB i1r0
- Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W. (2017). Uncertainty information in climate data records from Earth observation. Earth System Science Data, 0, 511-527.

9.8 Soil Temperature

9.8.1 ECV Product: Soil Temperature

Name Definition Unit Note	Celsiu Soil te (SST) (1) 1 i i (2) 1 Firstly depth to the Secon tempe precip tempe and re create Soil te	Soil temperature at different depth Celsius (°C) Soil temperature is an important variable and its usage is similar to the sea surface temperature (SST) in meteorology and climate. (1) The difference between SST and LST. The LST is the skin temperature of land and changes quickly. SST has a well defined relationship with the sea temperature at different depth (such as 1m, 10m). As a result, the SST could represent the real thermal energy of sea which has very important usage. The specific heat capacity of soil is much smaller than the specific heat capacity of water. Compared to water, soils conduct heat very slowly. (2) The reason choosing the soil temperature. Firstly, the soil temperature at different depth could represent the thermal energy. The standard depths for soil temperature measurements are 5, 10, 20, 50 and 100 cm below the surface according to the CIMO guide (Ocm is an additional in CMA); additional depths may be included. Secondly, LST is more difficult to measure using in situ thermometers or thermocouples s. The temperature sensor is difficult to fit tightly to the ground and remains stable. In the case of precipitation, the fitness will change and cause unstable measurement results. The position of the temperature sensor needs to be adjusted manually. Infrared temperature sensors are expensive, and require representative fields of view to that observed from satellites, so it is challenging to create a global network to represent all possible land covers. Soil temperature is easy to measure using thermometer (0/5/10 cm) or temperature sensor							
Itom pooded	l lmi4	Motric	[4]	Requirement: Value					
Item needed Horizontal	Unit km	Metric 2.5	[1] G	50	Derivation, References and Standards				
Resolution	KIII	degrees	В	150					
		of longitude	Т	139-278	For the GSN, the horizontal distance between two network stations should not be less than the length of 2.5 degrees of longitude at that location (278 km at the equator). For stations beyond 60 degrees latitude (north or south) the minimum distance is fixed at the length of 2.5 degrees of longitude at 60 degrees latitude (139 km). Consequently, the minimum spacing varies from 278 km at the equator to 139 km in the polar regions.				
Vertical Resolution	cm		G	0,5,10,20,50,100,180	The standard depths for soil temperature measurements are 5, 10, 20, 50 and 100 cm below the surface; additional depths may be included. LST is important for the satellite observation. So zero depth could be included. Goal: At the depth of 180cm the temperature is useful for long term climate monitor and prediction. Breakthrough: Automatic Weather Station observe could observe the soil temperature at these depths. Threshold: The thermometer can be used at this depth. Suitable for observing stations without automatic weather stations.				
			В	0,5,10,20,50,100					
			T	0,5,10,20					
Temporal Resolution	h		G B	3 6	Regarding surface synoptic observations: the main standard times shall be 0000, 0600, 1200 and 1800 UTC. The intermediate standard times shall be 0300, 0900, 1500 and 2100 UTC. Every effort should be made to obtain surface synoptic observations four times daily at the main standard times, with priority being given to the 0000 and 1200 UTC observations required for global exchanges.				
			T	24					
Timeliness	N/A		G	3					

			В	6	
			T	48	
Required	K		G	0.1 K	
Measurement			В	0.2 K	
Uncertainty			Т	0.2 K	
(2-sigma)					
Stability			G		
			В		
			Т		
Standards	WMO	Guide to Me	teorole	ogical Instruments and M	lethods of Observation (WMO-No.8)
and	Guide	to the GCO	S Surf	ace Network (GSN) and (GCOS Upper-Air Network (GUAN) (GCOS-144)
References	(WMC)/TD No. 155	58)		

9.9 Leaf Area Index

9.9.1 ECV Product: Leaf Area Index

Name	Leaf Area Index									
Definitio				k; The LAI va	alue that would produce the same indirect ground measurement as					
n	that ob	served ass			age distribution. (LAIeff=LAItrue x canopy clumping index) (Fang et					
	al., 20	•		>> 6						
					a plant canopy or ecosystem is defined					
	as one	as one half of the total green leaf area per unit horizontal ground surface area and measures the area of leaf material present in the specified environment. (Projection to the								
		underlying ground along the normal to the slope).								
Unit	m^2/m^2									
Note				measureme	nts to true values is an essential step and requires additional					
		ation abou		ura of the	canopy, e.g. gap size distributions, at the appropriate spatial res					
	olution		Cilitecti	ure or the	carlopy, e.g. gap size distributions, at the appropriate spatial res					
			RD: Th	reshold: 20	years; Target: >40 years					
					Requirements					
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizont	m		G	10	Leaf Area Index controls important mass and energy exchange					
al					processes, such as radiation and					
Resoluti					rain interception, as well as photosynthesis and respiration, wh					
on					ich couple vegetation to the climate system.					
					Application at 10 m: Climate Adaptation, Agricultural monitoring Best practices published here:					
					http://www.qa4ecv.eu/sites/default/files/D4.2.pdf					
			В	250	Scale needed for regional and global climate modeling. Land					
					surface and Earth System Model evaluation of LAI is often					
					completed at 1km spatial resolution for global assessments, so it would be useful to include these coarser resolution data.					
			Т	1000	For NWP (ECMWF)					
Vertical	canop		G	0.1	Every 1/10th of the canopy thickness to improve evaluation of					
Resoluti	У				vegetation LAI within Land surface/Earth System Models					
on	thick		В	4	Any specified level through the canopy					
Tempor	ness days		T G	1	Canopy mean When assimilated by model, this value corresponds to the climate					
al	aays		Ü	·	model temporal resolution. In order to derive a better phenology					
Resoluti					accuracy.					
on			В							
			Т	10	When using for crops or ecosytems modeling, or Land Surface / Earth System Model evaluation.					
Timeline	days		G	1	In order to be useful in climate change services.					
SS	, , ,		В	5	In order to be useful in environmental change services. Can be					
					longer (~months) for historic climate/environmental change					
			т	10	assessments.					
Require	m2/	One	T G	10 10%	For NWP (ECMWF) The goal value of uncertainties were assessed through literature					
Require d	m2	standar	U	when	review of impact of climate change on Leaf Area Index using various					
Measure		d		values	earth system models (see Mahowald, et. al.,					
ment		deviati		are	2016; https://www.earth-syst-dynam.net/7/211/2016/)					
Uncertai nty (2-		on or error		higher than 0.5;	They show impact on LAI deviation at global scale using various RCP					
sigma)		covaria		0.05 for	scenarios. If we take the models ensemble results, we demonstrate					
		nce		smaller	that the uncertainties should be less than Delta_LAI ~0.20 for a 2					
		matrix		values.	deg. C deviation for an annual average LAI, that can be					
		with associa			approximated to ~1.5. This means that the uncertainties should be smaller than 10%					
		ted			(~0.20/1.87*100.).					
		PDF	В							
	shape T			20%						
		(functi onal		when	Same as above but with Delta_LAI ~0.25					
		form of		values are						
		estimat		higher						
		ed		than 0.5;						
		error distribu		0.10 for						
		นเรเบเมน		smaller						

		tion for the term).		values.	
Stability	rate of chan ge of LAI over the availa ble time perio d (m2/ m2 per decad e)	A factor of uncerta inties to demon strate that the 'error' of the product remain s consta nt over the period, typicall y a decade	G	< 3% per decade	'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005. https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-86-9-1303). "It may represent a requirement on the extent to which the error of the product remains constant over a long period, typically a decade or more. It can be defined by the mean of uncertainties over a month". In the case that we have data over 10 years (= one decade) N=10 and U=10% S=sqrt(sum(U^2))/N. Assuming U constant along the period It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S=0.3*U = 0.31 * 10/100.0 = 3 % This number should be smaller than expected Leaf Area Index trend. Reference: C. Y. Jiang, Y. Ryu, H. Fang, R. Myneni, M. Claverie, Z. Zhu, Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Chang. Biol. 23, 4133–4146 (2017).)
		or	В		
	more T < 6% (see per backgr decade ound inform ation).	Same as above but with threshold uncertainty.			
Standar	LENGTI	,	RD: Th	reshold > 20	O years; Goal >40 years (Spatially and temporally consistent and gap
ds and					and use/land cover background)

filled, with provision of the related Land use/land cover background)

- Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics. 57, 739-799. https://doi.org/10.1029/2018RG000608
- Boussetta S., Balsamo G., Dutra E., Beljaars A., Albergel C. (2015) Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction, Remote Sensing of Environment, pp. 111-126. DOI:10.1016/j.rse.2015.03.009
- Fernandes, R., Plummer, S., Nightingale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, N., Lang, M., Lacaze, R., LeBlanc, S., Meroni, M., Martinez, B., Nilson, T., Pinty, B., Pisek, J., Sonnentag, O., Verger, A., Welles, J., Weiss, M., & Widlowski, J.L. (2014). Global Leaf Area Index Product Validation Good Practices. Version 2.0. In G. Schaepman-Strub, M. Román, & J. Nickeson (Eds.), Best Practice for Satellite-Derived Land Product Validation (p. 76): Land Product Validation Subgroup (WGCV/CEOS), doi:10.5067/doc/ceoswgcv/lpv/lai.002

9.10 Soil carbon

9.10.1 ECV Product: Peatlands total depth of profile, area and location

Name	Peatlar	Peatlands total depth of profile, area and location									
Definition	Geogra	Geographic extent of peatlands and depth of peat at intervals (20 m) within the peatlands									
Unit											
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	m	Grid cell	G	20							
Resolution		size	В								
			T								
Vertical	m		G								
Resolution			В								
			T								
Temporal	Years	Time	G	10							
Resolution		between	В								
		estimates	T	5							
Timeliness			G								
			В								
	0.4	0.01	T	10							
Required	%	2 Sd	G	10							
Measurement			В								
Uncertainty (2-sigma)			Т								
Stability			G								
Stubility			В								
			T								
Standards											
and											
References											

9.10.2 ECV Product: Mineral soil bulk density to 30 cms and 1m

Name	Minera	Mineral soil bulk density to 30 cms and 1m										
Definition	Bulk de	nsity of dry so	il aver	aged ove	er the topmost 30 cm and topmost 1 m, kg/m3							
Unit												
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km	Grid cell	G	0.1	For permafrost							
Resolution		size	В	1								
			Т	20								
Vertical	N/a		G									
Resolution			В									
			Т									
Temporal	Years	Time	G	10								
Resolution		between	В									
		estimates	Т	5								
Timeliness			G									
			В									
			Т									
Required	%	2 Sd	G	10								
Measurement			В									
Uncertainty			T									
(2-sigma)			G									
Stability												
			В									
Standards	Mations	al Posoarch Co		(2014) 0	Opportunities to Use Remote Sensing in Understanding							
and				• •	naracteristics: Report of a Workshop. Washington, DC: The							
References												
References	National Academies Press. https://doi.org/10.17226/18711											

9.10.3 ECV Product: Carbon in Soil

Name	Carbon	in Soil									
Definition	% of or	% of organic carbon in the topmost 30 cm and sub-soil 30-1000cm									
Unit	Mass %										
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal	km	Grid cell	G	0.1							
Resolution		size	В								
			T	1							
Vertical	N/a	0-30 cm	G								
Resolution		and 30-	В								
		1000cm	T								
Temporal	Years	Time	G	1	Consistent with LUC						
Resolution		between	В								
		estimates	T	5							
Timeliness			G								
			В								
			T								
Required	%	2 Sd	G	10							
Measurement			В								
Uncertainty			T								
(2-sigma) Stability			G								
Stability			В								
			Т								
Standards			'								
and	 Na 	chtergaele, F.	H., vai	n Velthuiz	zen, L. Verekst, and D. Widberg, Eds., 2012: Harmonized World						
References	Soil Da	atabase v1.2									
ittoror orroos	• Wi	eder et al, 20°	13, Na	ture Clim	ate Change;						
					o/j.chemer.2016.04.002						
					013, Todd-Brown et al., 2014, doi:10.5194/bg-11-2341-2014						
					g .						
	- 10	• Todd-Brown et al., 2014, doi:10.5194/bg-11-2341-2014									

10. ANTHROPOGENETIC

10.1 Anthropogenic Greenhouse Gas fluxes

10.1.1 ECV Product: High-resolution footprint around point sources

Name	High-re	High-resolution footprint around point sources										
Definition				ion plume around l								
Unit		kg CO ₂ /m ² /s										
Note	S											
		Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards							
Horizontal	km	distance	G	1								
Resolution			В									
			T	2								
Vertical	N/A		G									
Resolution			В									
			T									
Temporal	time	Repeat time	G	4 hours	IPCC 2019 Refinement							
Resolution		of	В									
		observations	T	6 days								
Timeliness	time		G	Within one week								
			В									
			T	Within one month								
Required		Twice the	G	1 ppm	IPCC 2006 GL							
Measurement		estimated	В									
Uncertainty (2-sigma)		standard deviation of	T	5 ppm	IPCC 2006 GL							
(L Sigina)		the total										
Stability			G		IPCC 2006 GL							
			В									
			T		IPCC 2006 GL							
Standards	ESA Mis	sion requiremer	nts do	cument of CarbonS	at, of CO ₂ Sentinel 7							
and												
References												

10.1.2 ECV Product: Total Estimated fluxes by coupled data assimilation/models with observed atmospheric – national

Name	Estima nationa		ed da	ta assimilation	n/ models with observed atmospheric –						
Definition	National estimates derived from highly resolved GHG emission gridmaps (modelled output, using proxy for the spatial distribution at fine-scale resolution)										
Unit	kg CO ₂ eq /m ² /s										
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a national scale. This includes both "anthropogenic" and "natural" emissions and removals.										
		Requirements									
Item needed	Unit	Metric	[1]		Derivation, References and Standards						
Horizontal	km	Size of country	G	10							
Resolution			В	100							
Vertical	Four	1)	T G	100							
Resolution	Layers	 surface, stack 	В								
Resolution	Layers	height (between	Т								
		100m and 300m),	1								
		3) cruise									
		height (10km)									
		and									
		4) supersonic									
		height									
		(15 km)									
Temporal	time	time	G	Annual	IPCC 2019, UNFCCC Inventory Guidelines						
Resolution			В	A I	LDOO 2010 LINECOO Lavorata and Cod della sa						
Timediana	Alian a	Alma a	T	Annual	IPCC 2019, UNFCCC Inventory Guidelines						
Timeliness	time	time	G	WITHIN ONE 1.25 YEARS	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines						
			В		Guidelines						
			T	WITHIN ONE	To allow comparison with estimates made						
			·	1.25 YEARS	following the UNFCCC Inventory Reporting Guidelines						
Required		Twice the	G	10%	IPCC 2019						
Measurement		estimated	В								
Uncertainty		standard	Т	30%	IPCC 2019						
(2-sigma)		deviation of the									
		total as a % of									
Chalailina		the total	0		IDOO 2010						
Stability			G		IPCC 2019						
			B T		IPCC 2019						
Standards			•								
and					iges.or.jp/public/2019rf/index.html Volume I,						
References	Chapter	6.10.2 Comparisons	with a	atmospheric mea	asurements						
	• GAW	Report No. 245, An	Integr	ated Global Gree	enhouse Gas Information System (IG3IS) Science						
		entation Plan			,						

10.1.3 ECV Product: Total Estimated fluxes by coupled data assimilation/models with observed atmospheric - continental

Name	Estimated fluxes by coupled data assimilation/ models with observed atmospheric - continental									
Definition	GHG emission gridmaps (modelled output, using proxy for the spatial distribution)									
Unit	kg CO₂eq /km² /yr									
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a continental scale. This includes both "anthropogenic" and "natural" emissions and removals.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards					
Horizontal	km	Size of	G	1000						
Resolution		continents	В							
			T	10000						
Vertical	N/A		G							
Resolution			В							
			Т							
Temporal	time	time	G	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines					
Resolution			В							
			Т	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines					
Timeliness	time	ime time	G	WITHIN ONE 1.25 YEARS	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines					
			В							
			T	WITHIN ONE 1.25 YEARS	To allow comparison with estimates made following the UNFCCC Inventory Reporting Guidelines					
Required	%	Twice the	G	10%	IPCC 2019					
Measurement		estimated	В							
Uncertainty (2-sigma)	Uncertainty standard	Т	25%	IPCC 2019						
Stability			G		IPCC 2019					
			В							
			Т		IPCC 2019					
Standards and References	Chapte • GAW	 IPCC 2019 IPCC 2019 IPCC 2019 refinement https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html Volume I, Chapter 6.10.2 Comparisons with atmospheric measurements GAW Report No. 245, An Integrated Global Greenhouse Gas Information System (IG3IS) Science Implementation Plan 								

10.1.4 ECV Product: Anthropogenic F-gas emissions from industrial processes and product use

Name	F-gas emissions from industrial processes and product use										
Definition	gas-rela potentia	F-Gas emissions are anthropogenic and mainly originating from chemical industrial processes and F-gas-related product use. The different F-gases have different, all very high global warming potentials.									
Unit	ton CO₂eq /yr for the region										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of fluorinated gases (HFC, PFC and SF ₆) aggregated according to the GWP as agreed by the UNFCCC										
	Requirements										
Item needed	Unit Metric [1] Value Derivation, References and Standards										
Horizontal Resolution	Nation	Country by country	G	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines						
			B T	By country and	IPCC 2006 GL, UNFCCC Inventory Guidelines						
				sector							
Vertical	N/A	Not	G								
Resolution		relevant	В								
			Т								
Temporal	time	time	G	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines						
Resolution			В								
			T	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines						
Timeliness	time	time	G	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines						
			В								
			T	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines						
Required	%	Twice the	G	10%	IPCC 2006 GL						
Measurement		estimated	В								
Uncertainty (2-sigma)	inty standard	Т	50%	IPCC 2006 GL							
Stability		Follow	G		IPCC 2006 GL						
		times	В								
	series consistency in 2006 GLs and 2019 Refinement	T		IPCC 2006 GL							
Standards and References	IPCC 2006 GL (Optional: 2019 Refinement of the GL; National inventory reports to UNFCCC)										

10.1.5 ECV Product: Anthropogenic N₂O emissions from fossil fuel use, industry, agriculture, waste and products use, indirect from n-related emissions/ depositions

Name	N₂O emissions from fossil fuel use, industry, agriculture, waste and products use, indirect from n-related emissions / depositions										
Definition	Anthropogenic N₂O emissions are mainly originating from fuel combustion, industry, agriculture, waste, products use (including indirect emissions from leaching and run-off, from NOx emissions										
Unit	ton N₂O /yr for the region										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of nitrous oxide										
	Requirements										
I tem needed	Unit	Metric	[1]	Value	Derivation, References and Standards						
Horizontal Resolution	Nation	Country by country	G	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines						
			В								
			T	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines						
Vertical	N/A	Not	G								
Resolution		relevant	В								
			Т								
Temporal	time	time	G	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines						
Resolution			В								
			T	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines						
Timeliness	time	time	G	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines						
			В								
			T	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines						
Required	%	Twice the	G	40%	IPCC 2006 GL						
Measurement		estimated	В								
Uncertainty (2-sigma)	ncertainty standard	Т	80%	IPCC 2006 GL							
Stability		Follow	G		IPCC 2006 GL						
		times	В								
	series consistency in 2006 GLs and 2019 Refinement		Т		IPCC 2006 GL						
Standards and References	• IPCC	2006 GL (Opt	ional:	2019 Refinement o	f the GL; National inventory reports to UNFCCC)						

10.1.6 ECV Product: Anthropogenic CH₄ emissions from fossil fuel, waste, agriculture, industrial processes and fuel use

Name	CH ₄ emissions from fossil fuel, waste, agriculture, industrial processes and fuel use						
Definition	Anthropogenic CH ₄ emissions are mainly originating from fermentation processes in waste (landfills),						
	manure, enteric fermentation, but also from fossil fuel extraction, transmission and distribution and						
Unit	use, and industrial processes.						
Note		ton CH ₄ /yr for the region					
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of methane, except from wetlands Requirements						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards		
Horizontal	Nation	Country by	G	By country and	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Resolution		country	Ü	sector	in 30 2000 32, dru 300 inventory databilities		
			В				
			Т	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Vertical	N/A	Not relevant	G				
Resolution			В				
			T				
Temporal		time	G	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Resolution			В				
			T	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Timeliness time	time	time	G	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines		
			В				
			T	WITHIN ONE 1.25 YEARS	UNFCCC Inventory Reporting Guidelines		
Required	%	Twice the	G	20%	IPCC 2006 GL		
Measurement		estimated	В				
Uncertainty (2-sigma)		Т	40%	IPCC 2006 GL			
Stability		Follow times	G		IPCC 2006 GL		
	series consistenci		В				
		in 2006 GLs	Т		IPCC 2006 GL		
		and 2019					
		Refinement					
Standards and References	• IPCC	IPCC 2006 GL (Optional: 2019 Refinement of the GL; National inventory reports to UNFCCC)					

10.1.7 ECV Product: Anthropogenic CO_2 emissions/ removals by land categories

Name	CO ₂ emissions/ removals by land categories						
Definition	Short and long cycle C emissions from land use, land-use and forestry (including carbon stock gains						
	and losses of biomass burning, disease, harvest, net deforestation)						
Unit	ton CO ₂ /yr for the region						
Note	This corresponds to UNFCCC reporting of anthropogenic emissions and removals from LULUCF						
	Requirements						
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards		
Horizontal	NONE – BY	As defined	G	By country/region	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Resolution	COUNTRY	by UNFCCC	В	December /newless	IDOO 2007 OL LINECOO Lecentere Codelle		
Montingl			T G	By country/region	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Vertical Resolution	N/A		В		Not relevant		
Resolution			Т		Not relevant		
Tomporal	nporal time	time	G	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Resolution			В	Allitual	if GC 2000 GE, DNI GGC Inventory Galdennes		
Resolution			T	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines		
Timeliness	meliness time	time	G	WITHIN ONE 1.25	UNFCCC Inventory Reporting Guidelines		
111101111000	tiirio	time	Ü	YEARS	on ood inventory reperting dutaennes		
			В				
		Т	WITHIN ONE 1.25	UNFCCC Inventory Reporting Guidelines			
				YEARS	3 1 3		
Required	% or kT	Twice the	G	15% or 300kT -	IPCC 2006 GL		
Measurement	estimated			whichever is			
Uncertainty		standard deviation of		largest			
(2-sigma)	the		В				
		the total as a	T	20% or 400kT –	IPCC 2006 GL		
	% of the total or mas			whichever is			
		of CO ₂		largest.			
Stability		0. 002	G		IPCC 2006 GL		
			В				
			T		IPCC 2006 GL		
Standards							
and	• IPCC 2003 GPG, IPCC 2006 GL;						
References	UNFCCC National Inventory Reports						

10.1.8 ECV Product: Anthropogenic CO₂ emissions from fossil fuel use, industry, agriculture, waste and products use

Name	CO ₂ emissions from fossil fuel use, industry, agriculture, waste and products use							
Definition	Anthropogenic long-cycle C emissions are mainly originating from combustion of fossil fuels, and for							
	about 10% also from non-combustion sources, such as cement production, ferrous and non-ferrous metal production processes, urea production, agricultural liming and solvent use.							
Unit	ton CO ₂ /yr for the region							
Note	This corresponds to UNFCCC reporting of anthropogenic emissions from non-LULUCF sources by							
	country							
Requirements The production of the production o								
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards			
Horizontal Resolution	NONE – BY COUNTRY	As defined by UNFCCC	G	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines			
Resolution			В		Culculines			
			T	By country and sector	IPCC 2006 GL, UNFCCC Inventory Guidelines			
Vertical	N/A		G	N/A	NOT RELAVENT			
Resolution			В					
			Т	N/A	NOT RELAVENT			
Temporal Resolution			G	ANNUAL	IPCC 2006 GL, UNFCCC Inventory Guidelines			
			В					
			T	Annual	IPCC 2006 GL, UNFCCC Inventory Guidelines			
Timeliness	Time -		G	WITHIN 1.25 YEARS	UNFCCC Inventory Reporting Guidelines			
	years		В					
			T	WITHIN 1.25 YEARS	UNFCCC Inventory Reporting Guidelines			
Required Measurement	%	Twice the estimated	G	Globally: 5% Nationally: 10%	IPCC 2006 GL			
Uncertainty		standard	В					
(2-sigma)	6	deviation of the total as a % of the total	Т	Globally: 10% Nationally: 30%	IPCC 2006 GL			
Stability		Follow	G		IPCC 2006 GL			
		times series consistency in 2006 GLs and 2019 Refinement	В					
			T		IPCC 2006 GL			
Standards and References	IPCC 2006	GL (Optional:	2019	Refinement of the GL; Natio	nal inventory reports to UNFCCC)			

10.2 Anthropogenic water use

10.2.1 ECV Product: Anthropogenic water use

Name	Anthropogenic Water Use								
Definition	Volume of water used by country, by sector – agricultural, industrial and domestic.								
Unit	Volume of water used by country. 109m³/year								
Note	AQUASTAT contains estimates of water use by county.								
Requirements									
Item needed	Unit	Metric	[1]	Value	Derivation, References and Standards				
Horizontal Resolution	By county	G	medium- scale						
				watersheds					
			В	Country,					
				plus major					
				watersheds					
			T	country					
Vertical		G							
Resolution			В						
Tanananal	*:	Vaan	T G	una a va tila la v					
Temporal Resolution	time	time Year, annual		monthly					
Resolution		data	B T	1					
Timeliness		data	G						
Timeliness	Helifiess		В						
			T						
Required	%	2	G	10					
Measurement		standard	В						
Uncertainty		deviations	Т	20					
(2-sigma)									
Stability			G						
			В						
			Т						
Standards									
and References									

GCOS Secretariat
Global Climate Observing System
c/o World Meteorological Organization
7 bis, Avenue de la Paix
P.O. Box No. 2300
CH-1211 Geneva 2, Switzerland

Tel: +41 22 730 8067 Fax: +41 22 730 8181 Email: gcos@wmo.int