Key future improvements in observing system

AOPC, OOPC, TOPC

The Atmospheric Observation Panel for Climate - AOPC

Tiered networks

- GSRN and GRUAN both operational to meet the needs for traceable long-term measurements for climate
- GBON operational (and maybe superseding many current networks)
- Concept adopted more broadly across WMO members
- Concept expansion to space based techniques with upcoming developments?

Data management

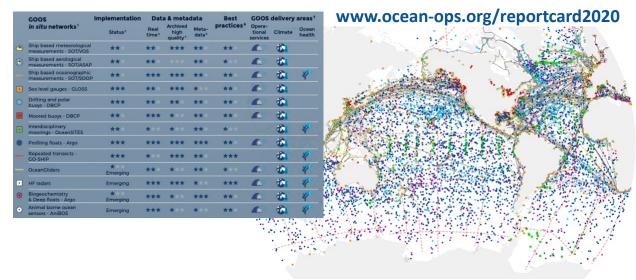
- The original data are forever
- But data stewardship is very often piecemeal and data holdings often not interoperable
- Many data are in image or hardcopy format only
- Data management is often single institution / funding stream / PI deep
- Pressing need for improved data management

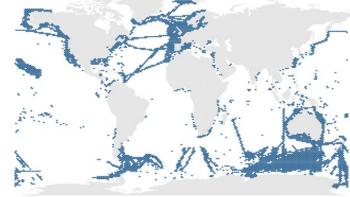
OOPC The Ocean Observations Physics and Climate panel

A panel of the Global Climate Observing System (GCOS), the Global Ocean Observing System (GOOS), and the World Climate Research Programme (WCRP)

Chairs: Sabrina Speich & Weidong Yu

GCOS Joint Panels Meeting
19 April 2021




Status

- Developing a fit-for-purpose
 SUSTAINED and TRULY GLOBAL
 OCEAN observing system able to
 respond and rapidly adapt to societal
 requirements and in particular those
 related with Climate Change (including
 Extremes & Adaptation)
- Focus on the Consider the entire value chain from collecting data to generating products and information for final users;
- Become more impactful in Science, and relevant for society (governments) and beneficial for society (i.e., Climate Services, local authorities,)
- Improving integration across Climate Subsystem to respond to societal requirements more consistently

OceanOPS network status summary versus EOVs/ECVs

First biological "sustained" ocean observations assessment

Sustained obs cover only 7% of surface of the ocean; only ⅓ of those are freely and openly shared; Satterthwaite et al., in press, 2020

We have already a base structure on how to go Forward

- OceanObs19 Conference (134 Articles in Frontiers) & Action plan
- Energy imbalance assessment (von Schuckmann et al. 2020)
- . Air-sea fluxes OASIS proposal funded SCOR working group
- Evaluations of parts of the observing system with design recommendations for the future (in terms of EOVs/ECVs against societal requirements
 - TPOS 2020 completion this year
 - TAOS Published this week
 - IndOOS-2 (published in BAMS Nov. 2020)
- UN Ocean Decade: An opportunity for a step change in delivering a fit-for-purpose observing system (in particular for GCOS including Extremes and Adaptation)

Areas for further work by GCOS

Initial Ideas

- Improving Data Centres is very Important for TOPC
 - Establish/support existing data centres and support data acquisition?
 - Ensure a clear data policy: free, open and easily accessible
 - Include all kind of data for the same ECV (in-situ, satellite, UAV, citizen science)
 - Increase the speed of delivery of data and information (to make it more climate action oriented), in addition to having long-term consistent ECV time series
 - Work with existing Data Centres no duplication
- Terrestrial observing networks
 - Require long-term sustainable support for operation,
 - particular challenges in developing countries, particularly resources and planning
 - Need stable, long-term, systematic, polar observing systems
 - Consider how long-term observations could be supported by infrastructures such as ICOS, eLTER, NEON,
 AmeriFlux, TERN, CERN etc.

New Developments

- Integrating observations from individual ECVs for more data driven synthesis on issues such as
 - GHG Fluxes
 - Provide information on anthropogenic versus natural GHG fluxes (incl. the consideration of inter-annual variability and extremes)
 - AFOLU
 - Biosphere indicator
 - phenology of natural forests shows encouraging results
- Improve inputs into specific international policy and assessment processes such as:
 - UNFCCC/Paris Agreement, i.e. Global Stocktake, Adaptation & Mitigation
 - IPCC how to link ECV observing system/networks to upcoming IPCC assessments
 - Consider overlaps with other Multilateral Environmental Agreements (MEA)
- Develop relationship with GBON and SOFF
 - May give a long-term solution to issues such as support for networks, data access and availability, data quality

Thank you

